
HDL, RTL and FPGA: Lab 1
Your first step in designing digital hardware

H R F

Yuri Panchul, Senior Hardware Design Engineer, MIPS
Lecture for Innopolis University - 2018-01-25

The informal explanation of acronyms
● HDL - Hardware Description Language

○ A language to design, simulate and verify circuits. We will use Verilog-2001.

● RTL - Register Transfer Level
○ A methodology to describe a circuit using HDL in a way that allows semi-automated

conversion of the code into a blueprint for a physical chip manufactured on a foundry

● ASIC - Application-Specific Integrated Circuit
○ An example of ASIC is a chip that runs Android on your smartphone

● SoC - System on Chip
○ An ASIC that has one or several processor cores, memories and other components that form

the whole computer system on a single chip

● FPGA - Field-Programmable Gate Array
○ A reconfigurable chip we will use as a substitution for manufacturing ASIC

Hardware/software dualism - an informal example

Microcontroller (embedded chip, ASIC, SoC)

CPU
Designed
in Verilog

Executes
instructions

Memory
Contains a program,
a sequence of instructions

Compiled from C
or a similar language

18800005
00001025
00451021
0044182a
5460fffe
00451021
03e00008
00000000

Hardware/software dualism - an informal example / 2

Microcontroller (embedded chip, ASIC, SoC)

CPU
Memory
FLASH
18800005
00001025
00451021
0044182a

Memory
RAM

I/O device
controllers
(designed using Verilog too)

Software: from C to processor instructions
C:

int f (int a, int b)
{
 int s = 0;

 while (s < a)
 s += b;

 return s;
}

Assembly:

sum:
 blez $4, exit
 move $2, $0

 addu $2, $2, $5
loop:
 slt $3, $2, $4
 bnel $3, $0, loop
 addu $2, $2, $5
exit:
 jr $31
 nop

Machine
code

18800005
00001025

00451021

0044182a
5460fffe
00451021

03e00008
00000000

Circuits: from Verilog to transistors (simplified)
module counter
(
 input clock,
 input reset,
 output logic [1:0] n
);
 always @(posedge clock)
 begin
 if (reset)
 n <= 0;
 else
 n <= n + 1;
 end
endmodule

What is FPGA? A simplified explanation

A matrix of cells with
changeable function

One cell can become AND,
another OR, yet another -
one bit of memory

FPGA does not contain
fixed CPU, but can be
configured to work as CPU

A picture from
http://jjmk.dk/MMMI/PLDs/FPGA/fpga.htm

What is inside FPGA cell?
Each cell has multiplexers or muxes

A mux is a device that implements choice, “if ” in
hardware

Muxes are connected to bits of memory, loaded
from outside FPGA

This allows forming circuits inside FPGA by
changing the contents of configuration memory

Pictures are from https://breadboardgremlins.wordpress.com/what-is-an-fpga/ and
http://www2.engr.arizona.edu/~rlysecky/courses/cs168-04w/lab7/lab7.html

https://breadboardgremlins.wordpress.com/what-is-an-fpga/
http://www2.engr.arizona.edu/~rlysecky/courses/cs168-04w/lab7/lab7.html

Twelve basic ideas of digital hardware design

● Gate
● Area
● Delay
● Parallelism
● Module
● Testbench

● Clock
● Reset
● D-Flip-Flop
● Power
● Finite State Machine
● Pipeline

We color-code the topics of Lab 1 in green, the topics of Lab 2 in blue and the topics of Lab 3 in purple.

A hardware design can be partitioned into

● Combinational logic
○ Used to calculate logic and arithmetical functions

● Sequential logic
○ Allows hardware to have memory and repeat actions

● The first lab covers only combinational logic

Combinational logic

● The outputs of the group of
components depend only on inputs

● You set inputs and get outputs after
some time

● This groups is called “a
combinational cloud”

● Used to calculate logic and
arithmetical functions

module top
(
 input a, b, c, d,
 output e, f
);

 assign e = a & (b | c);
 assign f = ~ (c ^ d);

endmodule

Sequential logic

● The outputs of the partition
depend not only on inputs but
also on internal state, stored in
registers

● Change of the state is
synchronized by clock signal

● Allows hardware to be smart -
memorize the intermediate
results and iterate

Lab 1 exercises
1. Simulating a combinational module

a. Ports, continuous assignments, testbench, delay, waveforms

b. We will use ModelSim PE Student Edition from Mentor Graphics

2. Synthesizing a combinational module with basic gates

a. Logic synthesis, constrains, synthesized schematics, FPGA configuration

b. We will use Intel Quartus Lite Edition and Terasic DE10-Lite FPGA boards

3. Homework: Synthesize a combinational module that uses input from a button
and muxes to output either your first name or last name to a multi-digit
7-segment indicator

Clone a repository from GitHub

Organization
https://github.com/MIPSfpga

Repository
digital-design-lab-manual

https://github.com/MIPSfpga

Exercise 1:
Simulating a
combinational
module

The design module - 1

● lab_01/src/lab1_hdl/lab1.v

● The unit of design is called “module”

● Module has a name and a list of ports

● Each port has a direction

○ input, output or inout

● Each port has a width / vector dimension

○ “[9:0]” means “10 bits from LED [9] till LED [0]”

○ If no dimension, 1-bit port assumed, like “input ABC”

The design module - 2

● lab_01/src/lab1_hdl/lab1.v

● “wire” declaration creates an intermediate connection between ports, other
wires or “reg” variables to be discussed further

● wire can be 1-bit wide, or multiple bit wide, like “wire [4:0] A”

● The assignments to wires are continuous

○ Every time the expression on right hand side changes, it triggers change
of the wire on right hand side

● Wires can be optimized away by the synthesis

The design module - 3

● lab_01/src/lab1_hdl/lab1.v

● The keyword “assign” is used for continuous assignments to an already
declared port or a wire

● Note that the assignments do not assume a specific order - they
semantically happen whenever the right hand side changes

● HDL simulator is an event-driven, it schedules the assignment evaluations
by putting them into a queue of events

● HDL synthesis simply creates a netlist (graph) for an electric circuit

The simulation testbench - 1

● lab_01/src/lab1_hdl/simulation/testb
ench.v

● The testbench module (TB) is for
simulation only, it is never
synthesized

● TB contains a special program that
tests the design module

● The design module instantiated
inside TB is frequently referred as
DUT, Design under Test

Testbench (TB)

DUT
(Design
under
Test)

The simulation testbench - 2

● lab_01/src/lab1_hdl/simulation/testb
ench.v

● Testbench

○ Instantiates Design under Test

○ Drives stimulus

○ Checks the responses

● Testbench may also call functions
in other languages (like C) to make
verification environments
sophisticated

Testbench (TB)

DUT
(Design
under
Test)

The simulation testbench - 3

● Module instantiation connects the
design module’s ports to the variables
declared in the testbench

● Module instantiation looks like a
function call, but it is not

○ DUT instance is physically put
inside the testbench module

○ The connections between TB
variables and DUT ports are
continuous, just like left and right
sides of “assign”.

● lab_01/src/lab1_hdl/simulation/t
estbench.v

The simulation testbench - 4

● lab_01/src/lab1_hdl/simulation/testbench.v

● Our TB generates stimulus in the simplest
way:

○ Assign a value to a variable connected
to DUT input port

○ Wait using #delay construct that
causes simulator to postpone the
execution of the next statement for a
number of specified time units

The simulation testbench - 5

● lab_01/src/lab1_hdl/simulation/testbench.v

● Keyword “initial” means that the next
statement is executed at the beginning og
the simulation.

● “begin/end” means that the statements
inside are executed sequentially.

● The assignments denoted with “=” inside
“begin/end” are called “blocking
assignments”. They are executed
sequentially, not in parallel (“block the
execution”).

The simulation testbench - 6

● lab_01/src/lab1_hdl/simulation/testbench.v

● The constant 2’b10 means “two bit-wide
binary number 10”.

● The time unit in #10 and simulation
precision can be specified using `timescale
directive. We will see this time later on
simulation waveforms. If we put this
directive to the beginning of the file, #10
means “10 nanoseconds”:

The simulation testbench - 7

● lab_01/src/lab1_hdl/simulation/testbench.v

● reg declaration means “a variable that can be
assigned inside begin/end block”

● $monitor statement in initial block tells the
simulator to print the specified text into the
simulation log whenever any of the variables
change

The simulation testbench - 8

● lab_01/src/lab1_hdl/simulation/testbench.v

● $dumpvar statement in initial block tells the simulator to generate the
simulation waveforms.

● Waveform is a database of signal changes for debugging the design.

● The waveform can be viewed in a waveform viewer, either standalone (like
GTKWave), or integrated into a Verilog simulator.

Batch file to run the simulation
● lab_01/src/lab1_hdl/simulation/01_simu

late_with_modelsim.bat

● Creates a directory for temporary files,
produced by ModeSim simulator

● Invokes the simulator executable vsim.

● vsim reads a stream of its proprietary
commands from a script file written in
TCL (Tool Command Language).

● If you work under Linux, you can write a shell script that does the same.

TCL script file for ModelSim
● lab_01/src/lab1_hdl/simulation/modelsi

m_script.tcl

● TCL (pronounced "tickle" or tee cee el)
is a scripting language used since
1990s in many EDA tools (EDA -
Electronic Design Automation).

● You don’t need to know it well, just
copy somebody else’s scripts for your
projects.

Now run everything, modify the code and run again

Exercise 2:
Synthesizing a
combinational
module with basic
gates

The main Quartus project file
● lab_01/src/lab1_hdl/synthesis/lab1.qpf

● It is OK for the Quartus project file to be empty.

● Quartus usually stores some dates and versions there for Intel / Altera
customer support.

● All the essential synthesis settings are not in .qpf, but in other files, .qsf and
.sdc.

QUARTUS_VERSION = "17.0"
DATE = "12:11:55 November 06, 2017"
PROJECT_REVISION = "lab1"

TCL script with synthesis settings - 1

● lab_01/src/lab1_hdl/synthesis/lab1.qsf

● For this project you need only four directives below, and some
signal mapping assignments (see the next slide).

● You don’t need to know all the script commands in QSF file.

● Just copy somebody’s script and use bare minimum settings.

set_global_assignment -name DEVICE 10M50DAF484C7G
set_global_assignment -name TOP_LEVEL_ENTITY lab1
set_global_assignment -name VERILOG_FILE ../../lab1.v
set_global_assignment -name PROJECT_OUTPUT_DIRECTORY .

TCL script with synthesis settings - 2

set_location_assignment PIN_B8 -to KEY[0]
set_location_assignment PIN_A7 -to KEY[1]
set_location_assignment PIN_A8 -to LED[0]
set_location_assignment PIN_A9 -to LED[1]
.

● lab_01/src/lab1_hdl/synthesis/lab1.qsf

● You need to map the port names in your design to the physical pins of FPGA.

● Synthesis tool know the location of PIN_B8 for chip 10M50DAF484C7G, but it
has no idea that the board connects it to a button and you call it KEY[0].

TCL script with synthesis settings - 3

set_instance_assignment -name IO_STANDARD \
 "3.3 V Schmitt Trigger" -to KEY*

set_instance_assignment -name IO_STANDARD "3.3-V LVTTL" -to LED*
.

● lab_01/src/lab1_hdl/synthesis/lab1.qsf

● Your QSF file has to specify a so-called I/O standard for each signal
connected to an FPGA pin.

● You don’t need to know the meaning of I/O standard property in this course.

● You can use wildcards for signal names when setting IO_STANDARD.

Before synthesis create a copy of project files

● lab_01/src/lab1_hdl/synthesis/make_project.bat

● Intel / Altera Quartus Lite Edition creates a lot of temporary files

● It is convenient to run synthesis in a separate directory

● You have to copy project files into that directory

● To do this, run make_project.bat [Windows] / run make_project.sh

Run synthesis in Intel Quartus● File:Open Project

● Do not confuse with
File:Open

● Find project file in your
temporary project
directory

● Do not open project
from the original
directory

● Double-click “Compile
Design” in Tasks
window

● Task window menu has a
viewer of
FPGA-independent
schematics.

● It shows the
representation of your
design after RTL
analysis,

● but before mapping RTL
to specific cells available
in this particular FPGA

● Task window menu also
has a viewer of mapped
schematics,

● where all your logic is
mapped to blocks that
directly correspond to
cells in target FPGA.

● Compare this schematics
to the schematics from
the previous slide.

Terasic DE10-Lite FPGA board
● Inexpensive: $85

● Academic price $55

● Intel FPGA MAX 10
10M50DAF484C7G

● 50K cells, enough for
designs with CPU cores like
MIPSfpga

● On-board 64MB SDRAM

● Connects directly to PC for
configuration

Configure FPGA on the board - 1

● Find and click on “Program
Device” in Tasks window

● Programmer window
should appear

● If you see “USB-Blaster”
right from “Hardware
Setup”, the board is
connected and found by
software

● In this case just press
“Start” button

Configure FPGA on the board - 2

● If you see “No hardware”,
press “Hardware Setup”

Configure FPGA on the board - 3

● “Hardware Setup” window
should appear with
“USB-Blaster” listed
under “Hardware”.

● If nothing is listed, check
your USB cable
connection.

● If the board is connected
but nothing is listed,
install USB-Blaster driver
or resolve driver conflict.

Configure FPGA on the board - 4

● Double-click on
“USB-Blaster”, then press
“Close”

Configure FPGA on the board - 5
● Now the hardware

setup problem should
be resolved

● Just press “Start”
button and see the
“Progress” indicator
becoming green.

● If “Progress” got stuck,
unplug USB cable,
plug it again and
repeat.

Add a new combinational element - MUX

● Multiplexers, or muxes, implement the
selection between values in hardware.

● The simplest way to infer mux in
hardware is to use ternary ?: operation.

● Modify the design with a mux, and re-run
synthesis and FPGA configuration.

Add new signals to expand the design with MUXes
● Two keys are not enough to demonstrate a mux because it is a ternary

operation. You need to add news signals, connected to buttons and switches
on the board

● You can also use on-board 7-segment display to output digits or even letters

● Get the full .qsf file for DE10-Lite board from
https://github.com/yuri-panchul/2017-year-end/tree/master/terasic_de10_lite

https://github.com/yuri-panchul/2017-year-end/tree/master/terasic_de10_lite

Preview
of the next Lab:
Simulating and

Synthesizing the
Sequential Logic

Computation in combinational logic is not instant

● It takes time for electric signal
to propagate.

● Before the results are ready,
the outputs may contain
random values.

● How to find when the results
are ready?

● We can synchronize the
computations with a special
signal called clock.

The picture is from Digital Design and Computer
Architecture, 2nd Edition by David Harris and Sarah Harris.
Elsevier, 2012

Clocks are useful not only to synchronize outputs

● Circuits synchronized with clocks are called sequential.

● Sequential circuits can also have memory and perform iterative computations.

● We will learn about sequential circuits in Lab 2.

Thank You!

