
	 © 	 I n - S t a t 	 n o v e m b e r 	 1 6 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

reportM I C R O P R O C E S S O R
www.MPRonline.com

	 	T h e 	 i n s i d e R ’ s 	 g u i d e 	 T o 	 M i c R o P R o c e s s o R 	 h a R d w a R e 	

MicroMiPS craMS code
New Processor Cores Introduce Denser 16/32-Bit Instruction Set

By Tom R. Halfhi l l {11/16/09-01}

Smaller	is	usually	better	for	embedded	processors,	so	mIpS	technologies	is	slimming	down	

its	1980s-vintage	instruction-set	architecture.	a	new	set	of	16-	and	32-bit	instructions—

dubbed	 micromIpS—uses	 less	 memory	 than	 existing	 32-bit	 mIpS	 instructions	 and	 the	

16-bit	extensions	added	in	the	1990s.
micromIpS	will	debut	early	next	year	in	two	

new	 embedded-processor	 cores,	 the	 mIpS32	
m14K	 and	 mIpS32	 m14Kc.	 the	 m14K	 is	 an	
improvement	 on	 the	 mIpS32	 m4K	 proces-
sor,	introduced	in	2002.	It’s	a	relatively	simple,	
cacheless	 core	 intended	 for	 32-bit	 microcon-
trollers	 in	 automobiles,	 industrial	 machinery,	
consumer	electronics,	and	office	equipment.

Its	bigger	brother,	the	m14Kc,	is	an	improve-
ment	 on	 the	 mIpS32	 4Kec	 processor,	 intro-
duced	in	2003.	the	m14Kc	has	an	mmU	with	
a	 translation	 lookaside	 buffer	 (tLb),	 making	
it	 suitable	 for	 sophisticated	 embedded	 operat-
ing	 systems	 that	 manage	 virtual	 memory.	 It’s	
designed	 for	 advanced	 consumer	 electronics,	
including	 Dtvs,	 DvD	 players,	 set-top	 boxes,	
home	 networking	 equipment,	 personal	 enter-
tainment	devices,	and	digital	cameras.	Figure	1	
shows	 how	 the	 m14K	 and	 m14Kc	 fit	 into	 the	
mIpS	product	line.

both	new	processors	respond	much	faster	to	
interrupts	 and	 have	 better	 debugging	 features	
than	the	mIpS	cores	they	supersede.	both	gain	
advantages	 in	 clock	 speed,	 power	 consump-
tion,	and	core	size	when	compared	with	arm’s	
	cortex-m3	 and	 arm926	 processors,	 and	 they	
give	arm’s	new	cortex-a5	a	run	for	the	money.	

Figure 1. The new MIPS32 M14K and MIPS32 M14Kc processor cores introduce the micro-
MIPS 16/32-bit instruction set and anchor the lower end of the MIPS product line. The
M14K supersedes the M4K core, primarily for 32-bit microcontrollers. The M14Kc super-
sedes the 4KE core, offering an MMU for virtual-memory embedded operating systems.

74K

MIPS32 + microMIPS ISAs,
denser code, faster interrupts,

AHB, M14Kc MMU

M14K

M14Kc

4KS

M4K

4KE

4KSd: Secure core

M4K: Low-cost MCUs

4KE: L1 cache, MMU

24K

24KE

34K

24K: 8-stage pipeline,
 >900MHz (65nm)

24KE: DSP extensions

34K: hardware multithreading

1004K

74K: 15-stage dual-issue pipeline,
out-of-order execution, 1.6-2.5GHz

(40nm), 5,000Dmips

1004K: Multithreaded,
coherent multiprocessing

(1-4 cores), 1.3-2.0GHz (40nm)

m
i
c
r
o
M
I
P
S

2 MicroMiPs	crams	code

	 © 	 I n - S t a t 	 n o v e m b e r 	 1 6 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

(See	 MPR 10/26/09-01,	“arm’s	 midsize	 multiprocessor.”)	
both	have	new	atomic	read-modify-write	instructions.	and	
the	m14K	has	an	optional	accelerator	that	improves	read/
write	 performance	 with	 flash	 memory—especially	 useful	
for	flash-based	microcontrollers.

overall,	 the	 new	 16/32-bit	 micromIpS	 instruction-set	
architecture	 (ISa)	 is	 the	 most	 important	 feature	 of	 the	
m14K	and	m14Kc.	according	to	mIpS,	the	memory	foot-
print	 of	 executable	 code	 will	 shrink	 by	 about	 35%	 while	
suffering	a	performance	hit	of	only	about	2%.	Yet	the	new	
processors	remain	backward-compatible	with	the	mIpS32	
release	2	ISa	and	existing	mIpS32	software,	because	they	
include	a	mIpS32	instruction	decoder.

MicroMIPS Outruns MIPS16e
one	exception	to	backward	compatibility	is	that	the	micro-
mIpS	ISa	doesn’t	support	the	branch-likely	instructions	in	
mIpS32-r2.	those	 instructions,	originally	 intended	to	tip	
off	the	processor	that	a	branch	is	probable,	are	infrequently	
used	 and	 have	 been	 deprecated.	 the	 new	 micromIpS	
assembler	automatically	substitutes	alternative	instructions	
in	 their	 place,	 so	 the	 difference	 should	 be	 transparent	 to	
programmers.

otherwise,	existing	mIpS32	software	should	run	on	the	
m14K	and	m14Kc	without	modification.	of	course,	devel-
opers	 must	 recompile	 to	 reap	 the	 advantages	 of	 the	 new	
micromIpS	 ISa.	 recompiling	 embedded	 software	 is	 less	
earthshaking	than	recompiling	pc	software,	so	the	require-
ment	isn’t	onerous—and	the	gains	are	worth	it.

Shrinking	 executable	 code	 by	 35%	 while	 reducing	 per-
formance	by	only	2%	is	impressive.	at	best,	replacing	every	
32-bit	instruction	with	a	16-bit	equivalent	would	shrink	the	
code	 by	 about	 50%,	 so	 a	 35%	 reduction	 for	 a	 real-world	
mix	of	16-	and	32-bit	 instructions	 is	quite	good.	 In	com-
parison,	 the	 existing	 mIpS16e	 16-bit	 extensions	 reduce	
code	size	by	25%	to	30%.	but	 the	performance	difference	
is	striking.	Whereas	mIpS16e	chokes	throughput	by	about	
30%,	 micromIpS	 exacts	 a	 mere	 2%	 penalty.	 micromIpS	
code	is	smaller	than	mIpS16e	code	but	plays	bigger.

micromIpS	will	help	mIpS	technologies	compete	more	
strongly	 for	 austere	 embedded	 systems.	 In	 particular,	
mIpS	hopes	to	win	a	larger	share	of	the	32-bit	microcon-
troller	market,	which	is	highly	fragmented	among	multi-
ple	vendors.	no	single	cpU	architecture	rules	this	market.	
Indeed,	some	microcontroller	vendors	hedge	their	bets	by	
using	 different	 32-bit	 architectures	 in	 different	 product	
lines.	 arm	 has	 been	 making	 aggressive	 inroads	 with	 its	
cortex-m3	processor	and	older	arm7-	and	arm9-family	
cores.	With	the	new	m14K	and	m14Kc,	mIpS	has	a	chance	
to	 gain	 share	 before	 one	 architecture	 (probably	 arm)	
dominates.

Shedding the TinyRisc Legacy
the	mIpS	architecture	is	overdue	for	this	kind	of	overhaul.	
Keep	in	mind	that	this	early	rISc	architecture	was	designed	

in	the	1980s	for	high-performance	workstations	and	servers,	
not	 for	 embedded	 systems.	 In	 1996,	 mIpS	 licensee	 LSI	
Logic	was	among	the	first	to	recognize	the	potential	of	the	
architecture	for	small	iron.	to	reduce	the	amount	of	mem-
ory	 required	 for	 32-bit	 code,	 LSI	 and	 mIpS	 technologies	
collaborated	on	a	new	subset	of	16-bit	 instructions	called	
mIpS-16	 (or	 mIpS16).	 the	 new	 instructions	 debuted	 in	
LSI’s	mIpS-compatible	tinyrisc	processor	core.	(See	MPR
10/28/96-10,	“LSI’s	tinyrisc	core	Shrinks	code	Size.”)

It	wasn’t	a	new	idea.	the	year	before,	arm	had	extended	
its	32-bit	rISc	instruction	set	with	16-bit	thumb	instruc-
tions.	(See	MPR 3/27/95-01,	“thumb	Squeezes	arm	code	
Size.”)	but	for	mIpS,	then	part	of	Silicon	Graphics,	mIpS16	
foreshadowed	a	strategic	shift	 toward	the	embedded	mar-
ket	 as	 Intel’s	 x86	 began	 squeezing	 the	 rISc	 architectures	
out	of	servers	and	workstations.	In	1999,	after	spinning	off	
from	 Silicon	 Graphics,	 mIpS	 technologies	 introduced	 its	
first	 synthesizable	 embedded-processor	 cores.	 (See	 MPR
5/31/99-04,	“Jade	enriches	mIpS	embedded	Family.”)

owing	to	legal	entanglements	with	LSI,	mIpS	was	unable	
to	 include	 mIpS16	 in	 those	 first	 cores.	 after	 the	 prob-
lems	were	resolved,	mIpS16	reappeared	as	mIpS16e.	and	
that’s	 where	 things	 stood	 until	 november	 2,	 when	 mIpS	
announced	micromIpS,	a	major	overhaul	of	the	16/32-bit	
instruction	set.

micromIpS	 isn’t	 just	 an	 extension,	 as	 mIpS16	 was.	
micromIpS	 redraws	 the	 opcode	 map—the	 normally	 sac-
rosanct	 definition	 of	 an	 ISa.	 In	 fact,	 existing	 mIpS32	
code	wouldn’t	run	on	the	new	m14K	and	m14Kc	at	all	 if	
each	processor	didn’t	have	 two	 instruction	decoders.	one	
decoder	 handles	 micromIpS	 code,	 and	 the	 other	 handles	
“legacy”	mIpS32	code.	micromIpS	 is	almost	a	clean-slate	
rethinking	of	the	mIpS	architecture.

micromIpS	adds	15	new	32-bit	instructions	and	converts	
39	existing	32-bit	instructions	to	16-bit	format.	micromIpS	
includes	another	215	existing	32-bit	instructions	from	the	
mIpS32	 ISa	but	 remaps	 their	binary	opcodes.	mIpS	 says	
future	mIpS64	processors	could	use	micromIpS,	too,	so	the	
ISa	is	a	genuinely	new	direction	for	the	company.	table	1	
lists	all	the	new	instructions.

although	 mIpS	 says	 the	 micromIpS	 ISa	 does	 “code	
compression,”	it’s	not	really	compression	in	the	same	sense	
as	 data	 compression.	 Instructions	 aren’t	 compressed	 in	
memory	and	expanded	after	fetching.	Instead,	mIpS	short-
ened	 the	 most	 commonly	 used	 32-bit	 instructions	 to	 16	
bits,	so	the	opcodes	use	only	half	as	much	memory.	register	
references	 and	 immediate	 values	 don’t	 necessarily	 shrink	
along	with	the	opcodes,	so	the	ideal	goal	of	50%	memory	
reduction	is	unattainable.

A Unified 16/32-Bit ISA
Unlike	 arm’s	 original	 thumb,	 micromIpS	 is	 generally	
modeless.	programs	can	freely	mix	16-	and	32-bit	instruc-
tions	 in	 a	 single	 stream,	 without	 switching	 modes.	 How-
ever,	 a	 mode	 switch	 is	 necessary	 if	 a	 program	 uses	 both	

3MicroMiPs	crams	code

	 © 	 I n - S t a t 	 n o v e m b e r 	 1 6 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

	micromIpS	and	mIpS32	 instructions,	 and	 special	 instruc-
tions	are	provided	for	this	purpose.

In	 essence,	 these	 mode-switching	 instructions	 steer	 the	
subsequent	instruction	stream	to	the	corresponding	instruc-
tion	decoder.	as	mentioned	above,	 the	m14K	and	m14Kc	
processors	 have	 separate	 decoders	 for	 each	 ISa.	 although	
the	 dual	 decoders	 have	 some	 redundant	 logic,	 they	 don’t	
lengthen	the	 five-stage	pipelines	 inherited	 from	the	ances-
tors	of	these	processors.	normally,	a	program	will	use	one	
ISa	or	the	other,	so	mode	switches	should	be	rare.

another	difference	between	micromIpS	and	arm’s	origi-
nal	thumb	is	that	interrupt	handlers	can	mix	16-	and	32-bit	

instructions.	there’s	no	need	to	switch	modes	for	different-
length	 instructions	when	entering	an	 interrupt	routine.	 In	
virtually	 every	 respect,	 micromIpS	 is	 a	 unified	 16/32-bit	
ISa.	 (arm’s	 16/32-bit	 thumb-2,	 introduced	 in	 2003,	 is	
similarly	modeless	and	applicable	to	interrupt	handlers;	see	
MPR 6/17/03-02,	“arm	Grows	more	thumbs.”)

of	course,	chopping	32-bit	instructions	down	to	16	bits	
entails	 some	 compromises.	 most	 16-bit	 instructions	 can	
access	only	eight	of	the	32	general-purpose	registers	(Gpr)	
in	the	mIpS	architecture,	because	the	abbreviated	 instruc-
tions	 have	 only	 three	 register-address	 bits	 instead	 of	 five.	
this	 compromise	 saves	 six	 bits	 if	 an	 instruction	 accesses	

Table 1. MicroMIPS instruction set. This table includes all the new or reformatted 16- and 32-bit instructions in the microMIPS ISA. The table
omits the 215 microMIPS instructions whose binary opcodes differ from existing MIPS32 instructions but whose mnemonics and functions
remain the same. (All those instructions are 32 bits long.) Most new instructions resemble existing instructions and will be familiar to MIPS
assembly-language programmers. Note that some branch instructions lack the traditional MIPS delay slot—in effect, a null operation follow-
ing a branch that gives the processor time to calculate the branch-target address. *These instructions refer to results from the 32- x 16-bit
multiply-divide unit (MDU).

Instruction Description Instruction Description

New 32-Bit MicroMIPS Instructions

ADDIUPC Add program counter with immediate JALX Jump and link, switch to microMIPS

BEQZC Branch if = 0, no delay slot JALX32 Jump and link, switch to MIPS32

BNEZC Branch if <> 0, no delay slot LWM32 Load multiple words

BGEZALS Branch if >= 0, short delay slot LWP Load word pair

BLTZALS Branch if <= 0, short delay slot LWXS Load word, scaled, indexed

JALRS Jump and link, short delay slot SWM32 Store multiple words

JALRS.HB Jump and link with hazard barrier, short delay slot SWP Store pair of registers

JALS Jump and link, short delay slot

New 16-Bit MicroMIPS Instructions

ADDIUR1SP Add stack pointer with immediate, unsigned LWM16 Load multiple words

ADDIUR2 Add register with encoded immediate LWGP Load word from GP

ADDIUSP Increment stack pointer LWSP Load word from stack pointer

ADDIUS5 Add to any GPR MFHI16 Move from high part of MDU output*

ADDIU16 Add, unsigned MFLO16 Move from low part of MDU output*

ANDI16 Logical AND immediate MOVE16 Move GPR to GPR

AND16 Logical AND MOVEP Move pair of registers

B16 Unconditional branch NOT16 Invert value

BEQZ16 Branch if = 0 OR16 Logical OR

BNEZ16 Branch if <> 0 SB16 Store byte

BREAK16 Trigger breakpoint exception SDDBP16 Trigger debug exception

JALR16 Jump and link SH16 Store halfword

JALRS16 Jump and link, short delay slot SLL16 Logical shift left

JR16 Jump register SRL16 Logical shift right

JRADDIUSP Jump register, increment stack pointer SUBU16 Subtract, unsigned

JRC Jump register, no delay slot SW16 Store word

LBU16 Load byte, unsigned SWSP Store to stack pointer

LHU16 Load halfword, unsigned SWM16 Store multiple words

LI16 Create immediate value XOR16 Logical XOR

LW16 Load word

4 MicroMiPs	crams	code

	 © 	 I n - S t a t 	 n o v e m b e r 	 1 6 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

three	 registers—two	 registers	 for	 input	 operands	 and	 one	
register	 to	 store	 the	 result.	 a	 few	 16-bit	 instructions	 can	
access	16	of	the	32	registers.

mIpS16e	 instructions	 can	 address	 only	 eight	 Gprs,	 so	
this	 compromise	 is	nothing	new.	micromIpS	does	a	 little	
better	than	mIpS16e,	because	a	few	16-bit	instructions	can	
read	or	write	some	operands	in	all	32	registers.	the	arm	
architecture	has	only	16	Gprs	to	begin	with,	even	for	32-bit	
instructions,	 so	 micromIpS	 doesn’t	 suffer	 in	 comparison	
with	thumb-2.

Some	 16-bit	 micromIpS	 instructions	 are	 limited	 to	
manipulating	fewer	operands	or	smaller	immediate	values—
another	common	trade-off	with	shorter	instructions.	Indeed,	
in	 many	 respects,	 micromIpS	 resembles	 the	 unified	 16/32-
bit	 instruction	 sets	 of	 thumb-2	 and	 arc	 International’s	
arcompact,	 which	 appeared	 in	 2002.	 (See	 the	 sidebar,	
“arcompact:	an	elegant	16/32-bit	ISa,”	in	MPR 2/18/03-06,	
“Soft	cores	Gain	Ground.”)

New Atomic Instructions
the	m14K	and	m14Kc	processors	have	two	additional	new	
instructions	that	aren’t	part	of	the	micromIpS	ISa.	both	are	
atomic	memory	operations.	they	are	 small	but	 important	
additions	 to	 the	 mIpS	 architecture,	 which	 has	 been	 ham-
pered	by	historical	limitations	in	this	regard.	(In	the	1980s,	
strict	rISc	 liturgy	 frowned	on	cISc-like	 instructions	 that	
perform	multiple	operations	directly	on	data	 in	memory.)	
the	 new	 atomic	 instructions	 perform	 read-modify-write	
operations	on	memory	and	cannot	be	interrupted.

one	 new	 atomic	 instruction,	 ASET,	 sets	 an	 individual	
bit	within	a	byte.	the	instruction	format	includes	an	offset	
from	the	memory	address,	so	any	bit	within	a	32-bit	mem-
ory	location	can	be	flipped	from	0	to	1.	Until	now,	an	equiv-
alent	operation	required	three	instructions	(load	a	byte,	set	

the	bit	by	applying	an	OR	mask,	save	the	byte),	which	were	
interruptible.	 the	 other	 new	 atomic	 instruction,	 ACLR,	
clears	any	bit	within	a	byte.	 It,	 too,	 replaces	 three	 instruc-
tions	(load	a	byte,	apply	an	AND	mask,	save	the	byte)	and	is	
uninterruptible.

the	ASET	and	ACLR	instructions	work	by	automatically	
disabling	interrupts	while	they’re	busy.	they	may	be	unsuit-
able	for	some	hard	real-time	code	that	absolutely	can’t	wait	
for	the	instruction	to	finish	an	operation,	particularly	if	the	
memory	is	slow.	Generally,	however,	the	atomic	instructions	
will	be	useful	when	a	program	must	modify	data	in	memory	
without	 fear	 that	 an	 interrupt	 will	 override	 the	 operation	
and	leave	the	data	in	an	uncertain	state.

new	instruction	sets	require	new	software-development	
tools.	codeSourcery’s	SG++	GnU-based	tools	now	support	
both	mIpS32	and	micromIpS.	programmers	can	use	a	tradi-
tional	command-line	user	interface	or	an	eclipse	integrated	
development	environment	(IDe).	also,	mIpS	has	upgraded	
its	navigator	Integrated	component	Suite	(IcS)	to	support	
micromIpS	and	mIpS32	in	an	eclipse	IDe.	mIpS	offers	an	
instruction-set	simulator	(IaSim),	a	cycle-accurate	simula-
tor	 (caSim),	 and	 an	 Soc	 development	 board	 with	 Xilinx	
FpGas	for	the	m14K	and	m14Kc	processors.

In	addition,	mIpS	has	enhanced	 its	System	navigator	 (a	
debug	probe	and	profiler)	 to	 support	both	new	processors,	
whose	debug	features	are	improved	over	existing	mIpS	pro-
cessors.	among	other	things,	the	eJtaG	debug	channel	works	
at	speeds	up	to	50mHz,	and	new	trace	options	help	program-
mers	find	elusive	bugs	hidden	in	the	mass	of	trace	data.

M14K: Fast MCU Core
Figure	2	is	a	block	diagram	of	the	m14K.	It’s	a	small,	cache-
less	 core	 ideal	 for	 32-bit	 microcontrollers,	 but	 it’s	 not	 a	
stripped-down	model,	and	some	features	are	configurable.	

Figure 2. MIPS32 M14K processor block diagram. Parity-protected local memories substitute for L1 caches, so real-time applications can rely on
deterministic behavior. Separate instruction decoders handle existing MIPS32 instructions and new microMIPS instructions. Chip designers can choose
between a fast or small 32- x 16-bit multiply-divide unit (MDU). Optional features, shown in dark purple, include a debug unit, flash-memory accel-
erator, AHB-Lite bus controller, coprocessor interface (COP2), and user-defined instruction (UDI) interface.

UDI
I/F

COP2
I/F

Interrupt
I/F

MDU

GPR Decoder

microMIPS

MIPS32

Execution Unit

System
Coprocessor

Debug &
Profiler

Power
Mgt

Flash
Accelerator

AHB-Lite
BIU

I-SRAM
I/F

SRAM
Controller

D-SRAM
I/F

FMT
MMU

5MicroMiPs	crams	code

	 © 	 I n - S t a t 	 n o v e m b e r 	 1 6 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

although	 it	 lacks	 the	 full-fledged	 mmU	 found	 in	 the	
m14Kc,	it	does	have	a	simple	memory	manager	with	fixed	
mapping	instead	of	a	tLb.	chip	designers	can	choose	from	
two	hardware	multiply-divide	units:	“small”	or	“fast.”	the	
fast	one	multiplies	32-	x	16-bit	operands	in	one	clock	cycle	
and	 32-	 x	 32-bit	 operands	 in	 two	 cycles.	 Division	 has	 a	
latency	of	12	to	33	cycles.

another	 configurable	 feature	 is	 the	 register	 set.	 the	
mIpS32	 standard	 is	 32	 registers,	 each	 32	 bits	 wide.	 chip	
designers	can	implement	additional	sets	of	shadow	regis-
ters	for	faster	context	switching.	Instead	of	dumping	reg-
isters	to	memory	and	restoring	them	after	each	switch,	the	
processor	 can	 instantly	 change	 a	 pointer	 to	 a	 shadow	 set	
that	holds	the	register	values	of	the	other	context.	both	the	
m14K	and	m14Kc	processors	 allow	developers	 to	 imple-
ment	1,	2,	4,	8,	or	16	sets	of	32	registers.

optional	 features	of	 the	m14K	processor	 include	debug	
logic,	 an	 amba	 aHb-Lite	 bus	 controller,	 a	 coprocessor	
interface,	 a	 user-defined	 instruction	 (UDI)	 interface,	 and	
a	 flash-memory	 accelerator.	 the	 aHb-Lite	 controller	 has	
a	unified	memory	 interface	for	both	 instructions	and	data,	
instead	of	the	separate	instruction	and	data	interfaces	found	
on	some	other	mIpS	processors.	two	unidirectional	32-bit	
channels	handle	 loads	and	stores.	the	m14K	has	a	“modi-
fied	 Harvard”	 memory	 architecture,	 because	 the	 unified	
bus	splits	into	separate	internal	datapaths	feeding	two	local	
memories	 for	 instructions	 and	 data.	 each	 internal	 Sram	
has	32-bit	addressing,	so	(in	theory)	each	memory	can	be	as	
large	as	4Gb.

the	 optional	 coprocessor	 interface	 is	 compatible	 with	
the	 mIpS-standard	 cop2	 interface	 found	 on	 other	 mIpS	
processors.	 It’s	 32	 bits	 wide,	 and	 it	 allows	 chip	 developers	
to	attach	additional	processor	cores	or	application-specific	
logic.	 the	 m14K	 implementation	 isn’t	 backward	 compat-
ible	 with	 cop1,	 which	 was	 designed	 for	 a	 floating-point	
math	coprocessor.

the	optional	UDI	interface	supports	the	mIpS	corextend	
technology,	 which	 allows	 developers	 to	 add	 application-
	specific	instructions.	although	corextend	doesn’t	make	the	
m14K	core	as	configurable	as	the	processors	from	arc	and	
tensilica,	 it’s	 quite	 powerful,	 and	 it’s	 an	 important	 feature	
missing	from	arm	processors.	(See	MPR 3/3/03-01,	“mIpS	
embraces	configurable	technology.”)

Figure	3	shows	another	valuable	option	for	the	m14K—
a	 flash-memory	 accelerator.	 this	 block	 will	 be	 especially	
appreciated	in	microcontrollers	that	store	application	code	
in	slow,	nonvolatile	flash	memory.	essentially,	the	accelera-
tor	is	a	configurable	prefetch	buffer	in	Sram.	chip	design-
ers	can	implement	two	cache	lines.	each	line	can	be	32,	64,	
or	128	bits	deep.	base	addresses	are	programmable,	so	each	
line	can	point	to	any	region	of	flash	memory.

the	prefetch	buffer	can	load	instructions	faster	than	the	
processor	can	drain	it.	For	example,	assume	that	a	100mHz	
m14K	processor	is	fetching	a	stream	of	eight	instructions	
(including	two	 loads	or	stores)	 from	50ns	(20mHz)	flash	

memory.	Without	prefetch,	the	processor	averages	4.2	clock	
cycles	 per	 instruction	 fetch.	 With	 prefetch,	 and	 assuming	
a	 100%	 hit	 rate	 in	 the	 buffer,	 the	 processor	 fetches	 one	
instruction	every	cycle.	assuming	a	75%	hit	 rate,	 the	pro-
cessor	averages	1.8	cycles	per	instruction.	assuming	a	50%	
hit	rate,	 the	average	 is	2.6	cycles	per	 instruction.	the	flash	
accelerator	is	a	relatively	small	feature,	but	it	can	improve	a	
microcontroller’s	responsiveness.

Interrupting the ARM Race
In	 another	 bid	 to	 make	 its	 processors	 snappier,	 mIpS	 has	
significantly	improved	the	response	times	for	interrupts	in	
both	 the	 m14K	 and	 m14Kc	 cores.	 mIpS	 processors	 aren’t	
particularly	sluggish	in	this	regard,	but	arm	has	been	mak-
ing	similar	 improvements	 to	cortex-family	cores	 intended	
for	microcontrollers,	so	mIpS	has	to	stay	in	the	arms	race.	
Faster	 interrupts	 will	 make	 the	 m14K	 and	 m14Kc	 more	
suitable	for	real-time	systems.

three	enhancements	make	the	difference.	First,	the	m14K	
and	m14Kc	can	prefetch	the	target	address	of	an	interrupt	han-
dler,	saving	precious	time	when	the	interrupt	triggers.	Second,	
the	 new	 processors	 adjust	 their	 stack	 pointers	 and	 perform	
other	related	chores	in	hardware	instead	of	in	software.	third,	
a	 new	 instruction	 (IRET)	 is	 a	 special	 return-from-interrupt	
that’s	better	for	this	purpose	than	the	usual	ERET	instruction.	
the	IRET	instruction	explicitly	supports	the	chaining	of	mul-
tiple	interrupts.	Figure	4	illustrates	this	process.

In	 the	 older	 m4K	 and	 4Kec	 processors,	 the	 latency	 for	
the	interrupt	prologue	and	chaining	is	34	clock	cycles,	and	
the	epilogue	requires	another	32	cycles.	that’s	a	total	of	66	
cycles	 for	 two	 chained	 interrupts.	 In	 the	 new	 m14K	 and	
m14Kc	processors,	the	latency	for	the	prologue	and	chain-
ing	is	17	cycles,	and	the	epilogue	takes	four	cycles.	that’s	a	
total	of	21	cycles—more	than	three	times	faster.

arm’s	 cortex-m0	 and	 cortex-m3	 have	 similar	 inter-
rupt	 latencies,	but	 comparisons	are	 tricky.	as	we	noted	 in	

FLASH

D-SRAM

AHB-Lite BIU

Flash
Accelerator

I-SRAM

MIPS
M14K
Core

Figure 3. M14K processor flash-memory accelerator. This optional block
adds an SRAM prefetch buffer to the M14K core. The two-line buffer is
configurable to depths of 32, 64, or 128 bits. MIPS says the buffer can
make flash memory seem four times faster. Performance scales even better
at higher core frequencies.

6 MicroMiPs	crams	code

	 © 	 I n - S t a t 	 n o v e m b e r 	 1 6 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

our	march	2009	report	on	the	cortex-m0,	the	comparison	
depends	on	what’s	included	in	the	calculation.	by	our	count,	
the	cortex-m0	can	handle	a	chained	interrupt	in	22	cycles,	
and	 the	 cortex-m3	 can	 handle	 a	 chained	 interrupt	 in	 18	
cycles.	 our	 comparison	 (based	 on	 vendor-supplied	 data)	
may	not	be	perfectly	cycle-accurate,	but	it	does	appear	that	
the	 latest	 mIpS	 and	arm	 cores	 for	 microcontrollers	 have	
similar	 interrupt	 latencies.	 (See	 MPR 3/2/09-01,	 “arm’s	
Smallest	thumb.”)

natively,	the	m14K	and	m14Kc	cores	support	a	vectored	
interrupt	mode	with	only	eight	sources.	to	get	more,	chip	
designers	must	add	an	external	interrupt	controller,	which	
can	support	as	many	as	256	sources.	the	m14K	and	m14Kc	
can	 also	 support	 up	 to	 256	 interrupt	 priority	 levels,	 ver-
sus	64	in	the	m4K	and	4Kec	processors.	any	interrupt	can	
switch	to	a	shadow	register	set,	which	saves	even	more	time,	
because	the	processor	needn’t	flush	and	restore	its	registers	
before	entering	the	interrupt	handler.

mIpS	has	bundled	all	these	improvements—shorter	inter-
rupt	latencies,	faster	chaining,	the	IRET	instruction,	support	
for	256	priorities,	and	the	new	atomic	instructions—into	a	
new	microcontroller	application-Specific	extension	(mcU-
aSe)	that	may	appear	in	other	mIpS	processors.

M14Kc Adds MMU and Caches
the	 m14Kc	 core	 is	 much	 like	 the	 m14K	 core,	 but	 it’s	
designed	 for	 somewhat	 higher-end	 applications.	 It	 has	 a	
full-fledged	mmU	with	a	tLb,	so	it	can	manage	embedded	
operating	 systems	 that	 address	 virtual	 memory.	 the	 tLb	
actually	comprises	three	buffers:	a	unified	tLb	with	16	or	
32	entries	(configurable);	a	four-entry	instruction	tLb;	and	
a	four-entry	data	tLb.	all	are	fully	associative.	the	unified	
tLb	can	map	up	to	64	pages	of	virtual	memory,	and	page	
sizes	 can	 range	 from	 1Kb	 to	 256mb.	 chip	 designers	 can	
replace	the	tLb	with	the	same	fixed-map	mmU	found	in	
the	m14K	core,	but	that	option	would	negate	the	primary	

advantage	of	the	m14Kc.
another	 difference	 between	 the	

m14Kc	 and	 its	 little	 brother	 is	 the	
first-level	 memory	 system.	 Instead	
of	 local	 memories,	 the	 m14Kc	 has	
configurable	 instruction	 and	 data	
caches,	up	to	64Kb	each.	caches	can	
be	one-,	two-,	three-,	or	four-way	set-
	associative.	 each	 way	 can	 be	 1Kb,	
2Kb,	4Kb,	8Kb,	or	16Kb.	parity	bits	
help	detect	soft	errors.

to	 supplement	 the	 caches,	 chip	
designers	 can	 add	 separate	 scratch-
pad	 rams	 for	 instructions	 and	
data.	 each	 scratchpad	 has	 its	 own	
32-bit	I/o	interface	to	local	on-chip	
memory,	 bypassing	 the	 aHb-Lite	
bus.	this	arrangement	provides	fast,	
no-miss	 access	 and	 deterministic	
behavior—critical	 features	 in	 real-
time	 applications.	 the	 scratchpads	
are	configurable;	each	can	be	as	large	
as	 1mb.	 optionally,	 a	 portion	 of	
scratchpad	memory	can	replace	one	

Cycles 4

EpilogueChainingPrologue

710

21 cycles total

IRQ n

IRQn+1
ISR n ISR n+1

Figure 4. Interrupt chaining in the MIPS32 M14K and M14Kc processors. The first interrupt, IRQn, is quickly followed by a second interrupt, IRQn+1.
The new IRET instruction jumps directly from IRQn to IRQn+1 without returning to the main instruction stream. When the last interrupt in the chain
terminates, IRET returns to the mainline code.

UDI
I/F

COP2
I/F

Interrupt
I/F

MDU

GPR Decoder

microMIPS

MIPS32

Execution Unit

System
Coprocessor

Power Mgt

AHB-Lite
BIU

D-Cache Control

D-SRAM I/F

Debug & Profiler

D-Cache

MMU

I-Cache Control

I-SRAM I/FI-Cache

Figure 5. MIPS32 M14Kc processor block diagram. This core has much in common with the simpler
M14K core. The main differences are parity-protected caches and a full-fledged MMU for running
higher-end embedded operating systems. Optional features, shown in dark purple, include debug
logic, dual scratchpad RAMs, the MIPS COP2 coprocessor interface, and CorExtend user-defined
instructions (UDI).

7MicroMiPs	crams	code

	 © 	 I n - S t a t 	 n o v e m b e r 	 1 6 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

way	of	a	cache	(up	to	16Kb).	Figure	5	is	a	block	diagram	of	
the	m14Kc	core.

the	 amba	 aHb-Lite	 bus	 controller	 is	 a	 standard	 fea-
ture	of	the	m14Kc,	not	an	option.	Like	the	controller	in	the	
m14K,	it	has	unidirectional	32-bit	read	and	write	channels	
that	fetch	instructions	and	data	from	unified	memory.	once	
fetched,	instructions	and	data	follow	different	datapaths	to	
the	caches.	by	including	aHb-Lite,	mIpS	is	acknowledging	
the	rising	popularity	of	this	bus	interface,	which	originated	
at	arm.	Fewer	Soc	designs	seem	to	be	using	the	open	core	
protocol	(ocp)	or	Ibm	coreconnect	buses	these	days.

Comparing Power and Performance
power-management	 features	 and	 configurable	 clock	 gating	
help	reduce	the	power	consumption	of	both	new	processors.	
these	cores	are	small	 to	begin	with,	occupying	significantly	
less	than	one	square	millimeter	of	silicon	even	when	optimized	
for	speed	and	manufactured	in	an	older	0.13-micron	cmoS	
process.	(It’s	still	a	common	process	for	microcontrollers.)

Using	tSmc’s	130nm-G	process,	mIpS	estimates	that	the	
m14K	core	will	require	only	0.35mm2	of	silicon	when	syn-
thesized	for	minimum	area	and	only	0.68mm2	when	synthe-
sized	for	maximum	speed.	the	worst-case	maximum	clock	
frequencies	 for	 those	 configurations	 will	 be	 100mHz	 and	
180mHz,	 respectively.	 at	 those	 frequencies,	 performance	
will	 range	 from	 150	 Dhrystone	 mips	 to	 270Dmips.	 mIpS	

estimates	 that	 typical	 power	 consumption	 (as	 measured	
under	simulation	while	running	Dhrystone)	will	be	12mW	
for	 the	 area-optimized	 configuration	 and	 39.6mW	 for	 the	
speed-optimized	configuration.

In	 a	 more	 up-to-date	 (but	 hardly	 cutting-edge)	 tSmc	
90nm-G	process,	 the	m14K	 core	 is	 even	 smaller.	an	area-
optimized	 configuration	 will	 occupy	 only	 0.21mm2	 of	
silicon,	 deliver	 290Dmips	 at	 193mHz,	 and	 consume	 only	
11.6mW.	 a	 speed-optimized	 configuration	 will	 occupy	
0.51mm2,	deliver	442Dmips	at	295mHz,	and	consume	only	
35.4mW.	 of	 all	 the	 aforementioned	 configurations,	 the	
area-optimized	core	in	90nm	is	the	most	energy	efficient	by	
far,	delivering	25Dmips	per	milliwatt.

the	m14Kc	core	 is	 larger	 and	more	power	hungry,	but	
only	 in	 relative	 terms.	 In	 tSmc’s	 90nm-G	 process,	 an	
area-optimized	 configuration	 requires	 0.37mm2	 of	 silicon,	
delivers	 291Dmips	 at	 194mHz,	 and	 consumes	 15.5mW.	a	
speed-optimized	 configuration	 requires	 0.82mm2,	 deliv-
ers	 483Dmips	 at	 322mHz,	 and	 consumes	 48.3mW.	 the	
area-optimized	core	is	the	most	energy	efficient,	delivering	
18.75Dmips	 per	 milliwatt.	 table	 2	 summarizes	 these	 esti-
mates	and	notes	the	physical	libraries	used	for	synthesis.

Comparing MIPS and ARM
mIpS	designed	the	m14K	and	m14Kc	cores	to	challenge	the	
arm926eJ-S	 and	 cortex-m3,	 two	 popular	 cores	 in	 32-bit	

Feature
MIPS M14K

Speed Optimized
MIPS M14K

Area Optimized
MIPS14Kc

Speed Optimized
MIPS M14Kc

Area Optimized

TSMC 90nm-G

Transistors Standard Vt Standard Vt Standard Vt Standard Vt

Logic Library Virage HS TSMC HP Virage HS TSMC HP

Memory Library Dolphin Virage HD Dolphin Virage HD

Core Frequency 295MHz 193MHz 322MHz 194MHz

Core Area 0.51mm2 0.21mm2 0.82mm2 0.37mm2

Core Power (typical) 0.12mW / MHz 0.06mW / MHz 0.15mW / MHz 0.08mW / MHz

Dhrystone 2.1 442Dmips 290Dmips 483Dmips 291Dmips

Power Efficiency 12.5Dmips / mW 25Dmips / mW 10Dmips / mW 18.75Dmips / mW

TSMC 130nm-G

Transistors Standard Vt Standard Vt Standard Vt Standard Vt

Logic Library TSMC HP Artisan TSMC HP Artisan Metro

Memory Library Virage HS Virage HD Virage HS Virage HD

Core Frequency 180MHz 100MHz 205MHz 100MHz

Core Area 0.68mm2 0.35mm2 1.29mm2 0.61mm2

Core Power (typical) 0.22mW / MHz 0.12mW / MHz 0.41mW / MHz 0.14mW / MHz

Dhrystone 2.1 270Dmips 150Dmips 307Dmips 150Dmips

Power Efficiency 6.8Dmips / mW 12.5Dmips / mW 3.6Dmips / mW 10.7Dmips / mW

Table 2. MIPS32 M14K and M14Kc processor power/performance comparison. All numbers are MIPS estimates based on simulations with
preliminary RTL. Although this table specifies the physical libraries that MIPS used when compiling the SRAMs, the silicon-area measure-
ments are for the CPU cores only, not including caches or local memories. Ditto for the power estimates, which represent “typical” con-
sumption when running Dhrystone 2.1 with minimal I/O.

8 MicroMiPs	crams	code

	 © 	 I n - S t a t 	 n o v e m b e r 	 1 6 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

Feature
MIPS
M14K

MIPS
M14Kc

MIPS
M4K

MIPS
4KEc (Soft)

ARM
Cortex-A5

ARM
Cortex-M3

CPU ISA MIPS32 R2 MIPS32 R2 MIPS32 R2 MIPS32 R2 ARMv7-A ARMv7-M

Arch. Width 32 bits 32 bits 32 bits 32 bits 32 bits 32 bits

16-Bit Instr. microMIPS microMIPS MIPS16e MIPS16e Thumb, Thumb-2 Thumb, Thumb-2

Related Core MIPS32 M4K MIPS32 4KEc MIPS32 4K MIPS32 4KE Cortex-A8 —

GPUs
32 x 32 bits
1–16 sets

32 x 32 bits
1–16 sets

32 x 32 bits
1–16 sets

32 x 32 bits
1–16 sets

16 x 32 bits 16 x 32 bits

Pipeline Depth 5 stages 5 stages 5 stages 5 stages 8 stages 3 stages

Branch Pred. — — — — Dynamic Speculation

L1 Cache (I / D) — 0–64K each — 0–64K each 4K–64K each —

L2 Cache — — — —
Optional
16K–8MB

—

Instr. RAM 0–4MB 0–1MB 0–4GB 0–1MB — 0–1MB

Data RAM 0–4MB 0–1MB 0–4GB 0–1MB — 0–1MB

Memory
Management

MMU
(Fixed map)

MMU
(TLB)

MMU
(Fixed map)

MMU
(TLB)

MMU
(TLB)

Optional MPU
(8 regions)

Coherent MP — — — —
Optional
1–4 cores

—

Hardware
Multiplier

Fast or small
32 x 16 bits

Fast or small
32 x 16 bits

Fast or small
32 x 16 bits

Fast
32 x 16 bits

Single-cycle
32 x 32 bits

Single-cycle
32 x 32 bits

External
Interrupts

8 (vectored)
256 (external)*

8 (vectored)
256 (external)*

6 (vectored)
256 (external)*

6 (vectored)
256 (external)*

n/a
Configurable

1–240

Interrupt
Latency

21 cycles
(chained)

21 cycles
(chained)

66 cycles
(chained)

66 cycles
(chained)

n/a
18 cycles
(chained)

Interrupt
Priorities

256 256 64 64 n/a n/a

Privilege Modes 2 2 2 2 2 + TrustZone 2

Custom
Extensions

Optional
(CorExtend)

Optional
(CorExtend)

Optional
(CorExtend)

Optional
(CorExtend)

— —

System
Interface

MIPS SRAM
1 or 2 x 32 bits

or AHB-Lite
2 x 32 bits

AHB-Lite
2 x 32 bits

MIPS SRAM
1 or 2 x 32 bits

MIPS BIU
32 bits

AMBA-3 AXI
1 x 64 bits

Optional 2 x 64 bits
(multiprocessor)

AHB-Lite
2 x 32 bits

Coprocessor
Interface

MIPS COP2
32 bits

MIPS COP2
32 bits

MIPS COP2
32 bits

MIPS COP2
32 bits

— —

Core Frequency
(Max)

295MHz
(90nm-G)

322MHz
(90nm-G)

200–414MHz
(90nm-G)

250–420MHz
(90nm)

480MHz–1.0GHz
(40nm-LP, 40nm-

G)

50–191MHz
(90nm-G)

Core Area
@ Max Freq

0.51mm2
(90nm-G)

0.82mm2
(90nm-G)

0.12–0.53mm2
(90nm-G)

0.65–1.2mm2
(90nm, 8K caches)

0.27mm2
(40nm-LP)

0.25–0.37mm2
(90nm-G)

Dhrystone 2.1 1.5Dmips / MHz 1.5Dmips / MHz 1.6Dmips / MHz 1.6Dmips / MHz 1.57Dmips / MHz 1.25Dmips / MHz

Power (typical)
35.4mW
(90nm-G)

48.3mW
(90nm-G)

8.0–62.1mW
(90nm-G)

37.5–109.2mW
(90nm)

57.6mW
(40nm-LP)

2.0–13.3mW
(90nm-G)

Power Efficiency
Dmips / mW

12.5
(90nm-G)

10.0
(90nm-G)

10–40
(90nm-G)

6.1–10.6
(90nm)

13.0
(40nm-LP)

31.2–17.9
(90nm-G)

Introduction Feb 2010 Feb 2010 2002 2003 2009 2004

Table 3. Feature comparison of the MIPS32 M14K, M14Kc, M4K, 4KEc, ARM Cortex-A5, and Cortex-M3 cores. The MIPS M14K will
compete with the ARM Cortex-M3 for microcontroller designs. The MIPS M14Kc will compete with the ARM Cortex-A5 for SoC designs
requiring a full-fledged MMU to run higher-end embedded operating systems. When comparing these performance specifications—all of
them estimates provided by the vendors—mind the differences in fabrication processes. MPR was able to obtain estimates at 90nm for all
cores except the new Cortex-A5, which is specified in a 40nm low-leakage process. *The MIPS processors require an external interrupt
controller to support 256 interrupts. (n/a: data not available.)

9MicroMiPs	crams	code

	 © 	 I n - S t a t 	 n o v e m b e r 	 1 6 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

microcontrollers	 and	 Socs.	 meanwhile,	arm	 was	 working	
on	the	cortex-a5,	which	was	announced	less	than	two	weeks	
before	 mIpS	 unveiled	 its	 new	 processors.	 the	 m14K	 and	
m14Kc	look	good	against	the	existing	arm	cores,	generally	
beating	them	in	clock-frequency	headroom,	size,	and	power.	
the	cortex-a5	is	stiffer	competition	but	not	a	clear	winner.

table	 3	 summarizes	 the	 features	 of	 the	 mIpS32	 m14K	
and	m14Kc	cores	and	compares	 them	with	 the	new	arm	
cortex-a5	and	existing	cortex-m3.	this	table	also	includes	
the	mIpS32	m4K	and	4Kec	processors	that	the	new	mIpS	
cores	 supersede.	 as	 usual,	 it’s	 almost	 impossible	 to	 fairly	
compare	 these	 vendor-supplied	 power	 and	 performance	
estimates,	 because	 they	 assume	 different	 fabrication	 pro-
cesses	and	other	unknown	variables	(exact	core	configura-
tions,	 logic-synthesis	 scripts,	 cell	 libraries,	 etc.).	 neverthe-
less,	a	few	things	stand	out.

the	 new	 micromIpS	 16/32-bit	 instruction	 set	 should	
erase	the	code-density	handicap	that	has	dogged	mIpS	since	
arm	introduced	the	16/32-bit	thumb-2	instruction	set	in	
2003.	or,	to	put	it	another	way,	micromIpS	should	erase	the	
performance	 handicap	 that	 dogged	 mIpS	 when	 programs	
used	the	mIpS16e	extensions,	which	sap	more	throughput	
than	thumb-2	does.

the	 new	 mIpS	 processors	 significantly	 improve	 their	
interrupt-handling	 performance	 and	 flexibility,	 achieving	
approximate	 parity	 with	 arm’s	 processors.	 code	 density	
and	interrupt	handling	are	especially	important	for	micro-
controllers,	a	renewed	target	for	mIpS.	even	if	mIpS	doesn’t	
clearly	beat	arm	in	every	category,	reaching	parity	is	a	wor-
thy	accomplishment.

mIpS	 has	 two	 advantages	 that	 can	 boost	 performance	
without	cranking	up	the	clock	speed,	but	they	demand	extra	
effort	 from	 developers.	 one	 advantage	 is	 register	 shadow-
ing.	by	configuring	an	m14K	or	m14Kc	core	with	additional	
sets	of	Gprs—up	to	16	sets	of	32	registers—developers	can	
accelerate	context	switching	and	interrupt	handling.	arm’s	
single	set	of	only	16	registers	seems	claustrophobic	in	com-
parison.	another	mIpS	advantage	is	corextend,	which	lets	
designers	 add	 application-specific	 instructions.	 corextend	
requires	diligent	performance	profiling	and	rtL	handiwork,	
but	the	payoffs	can	be	enormous.

arm	has	advantages,	too.	the	cortex-a5	leaves	behind	
the	 aging	 aHb	 bus	 and	 adopts	 the	 latest	 amba-3	 aXI	
standard.	 aXI	 is	 more	 efficient	 than	 aHb-Lite,	 which	
mIpS	 offers	 for	 the	 m14K	 and	 m14Kc.	and,	 for	 higher-
	performance	applications,	the	cortex-a5	offers	the	option	
of	 symmetric	 multiprocessing	 with	 up	 to	 four	 cores	 and	
memory	coherency.

although	 the	 mIpS	 cop2	 interface	 makes	 multicore	
designs	 possible,	 intercore	 communications	 and	 memory	
coherency	 are	 exercises	 for	 the	 designer,	 not	 off-the-shelf	
features.	 to	 match	 the	 multicore	 flexibility	 of	 the	 cortex-
a5,	 mIpS	 developers	 must	 step	 up	 to	 the	 mIpS32	 1004K	
multiprocessor	core.	(See	MPR 4/28/08-01,	“multicore	mul-
tithreading	With	mIpS.”)

MIPS Fares Well Against ARM
perhaps	 the	 most	 surprising	 result	 of	 comparing	 the	 new	
mIpS	processors	with	arm’s	best	cores	is	that	arm	no	lon-
ger	has	a	clear	advantage	in	power	consumption,	core	area,	
and	performance.	Usually,	those	are	arm’s	strengths.

For	 instance,	 using	 the	 data	 in	 tables	 2	 and	 3,	 we	 can	
compare	 the	 two	 microcontroller	 cores—the	 mIpS	 m14K	
and	arm	cortex-m3—in	the	same	tSmc	90nm-G	process.	
an	area-optimized	m14K	will	consume	11.6mW	at	193mHz	
in	 0.21mm2	 of	 silicon.	a	 speed-optimized	 cortex-m3	 will	
consume	 13.3mW	 at	 191mHz	 in	 0.37mm2	 of	 silicon.	 the	
m14K	requires	less	power	and	silicon	at	virtually	the	same	
clock	 frequency.	 In	 power	 efficiency,	 the	 m14K	 wins,	 too:	
25Dmips	per	milliwatt	versus	17.9Dmips	per	milliwatt.

note	 that	 we	 compared	 an	 area-optimized	 m14K	 with	
a	 speed-optimized	 cortex-m3.	 that’s	 because	 a	 speed-
optimized	m14K	can	reach	a	much	higher	clock	frequency	
(295mHz).	 assuming	 the	 two	 processors	 are	 clocked	 to	
deliver	similar	performance,	 the	m14K	will	use	 less	power	
and	 silicon.	 (the	 m14K	 has	 a	 throughput	 advantage	 of	
1.5Dmips	per	megahertz	versus	1.25Dmips	per	megahertz	
for	the	cortex-m3.)

arm	 says	 an	 area-optimized	 cortex-m3	 consumes	 a	
mere	2.0mW.	but	it	would	be	a	trifle	larger	than	the	m14K	
core	(0.25mm2	versus	0.21mm2),	and	arm	specifies	a	clock	
frequency	 of	 only	 50mHz.	 In	 contrast,	 mIpS	 specifies	
193mHz	for	its	area-optimized	m14K	core	in	the	same	pro-
cess.	Slowing	the	m14K	core	to	50mHz	would	drop	power	
consumption	to	about	3.0mW,	only	a	milliwatt	more	than	
the	cortex-m3.	realistically,	a	developer	 targeting	a	90nm	
process	 probably	 needs	 more	 than	 50mHz	 for	 the	 target	
application.

comparing	the	m14Kc	with	the	new	cortex-a5	is	almost	
pointless,	because	we	have	90nm	data	for	the	mIpS	proces-
sor	and	40nm	data	for	the	arm	processor.	that’s	a	difference	
of	two	process	generations.	also,	the	mIpS32	24K	or	1004K	
processors	are	probably	better	matches	for	the	cortex-a5,	in	
terms	of	features.

nevertheless,	 the	 m14Kc	 looks	 pretty	 good.	 Fabricated	
in	90nm-G,	a	speed-optimized	m14Kc	consumes	48.3mW	
at	322mHz	in	0.82mm2	of	silicon.	Fabricated	 in	40nm-Lp,	
even	an	area-optimized	cortex-a5	consumes	more	power:	
57.6mW	versus	48.3mW.	the	cortex-a5	might	 fare	better	
when	fabricated	in	40nm-G,	which	is	leakier	than	40nm-Lp	
but	uses	less	dynamic	power.

as	 we	 would	 expect	 from	 the	 huge	 difference	 in	 pro-
cess	 technologies,	 the	 40nm	 cortex-a5	 is	 much	 smaller	
(0.27mm2	 versus	 0.82mm2)	 and	 faster	 (480mHz	 versus	
322mHz)	 than	 the	 90nm	 m14Kc.	 assuming	 two	 process	
shrinks	 to	 40nm,	 the	 m14Kc	 should	 be	 very	 competitive	
with	arm’s	latest	core.

Competition Heats Up
Historically,	arm	tends	to	have	the	smallest,	lowest-power	
processors,	whereas	mIpS	tends	to	excel	in	high	performance.	

10 MicroMiPs	crams	code

	 © 	 I n - S t a t 	 n o v e m b e r 	 1 6 , 	 2 0 0 9 	 m I c r o p r o c e S S o r 	 r e p o r t

to	some	extent,	those	tendencies	reflect	the	history	of	each	
company.	almost	from	the	start,	arm	focused	on	embed-
ded	systems,	whereas	mIpS	originally	focused	on	worksta-
tions	and	servers.

Lately,	 arm	 has	 been	 reaching	 toward	 higher	 per-
formance,	 because	 that	 is	 where	 arm’s	 biggest	 market	
(mobile	phones)	 is	 going.	meanwhile,	mIpS	 is	migrating	

toward	lower	power,	because	that’s	where	its	biggest	mar-
ket	(consumer	electronics)	is	going.	at	the	same	time,	both	
companies	fear	encroachment	by	the	x86,	because	mobil-
ity	is	where	Intel’s	biggest	market	(personal	computing)	is	
going.

For	the	harried	engineers	at	arm,	mIpS,	and	Intel,	life	is	
getting	tougher.	but	it’s	good	news	for	chip	designers,	who	
are	 getting	 more	 and	 better	 choices.	 embedded-processor	
cores	are	growing	more	powerful	and	power	efficient.	the	
mIpS	m14K	and	m14Kc	are	arriving	hot	on	the	heels	of	the	
arm	cortex-a5	and	tensilica’s	new	Xtensa	LX3	and	Xtensa	
8	(which	MPR	will	cover	soon).	another	competitor,	arc	
International,	was	recently	acquired	by	virage	Logic,	which	
can	 offer	 one-stop	 shopping	 for	 Soc	 designers.	 (See	 MPR
9/14/09-01,	“Summer	Shopping	Spree.”)

the	 m14K	 and	 m14Kc	 processors—and,	 especially,	 the	
micromIpS	 ISa—move	 mIpS	 technologies	 in	 a	 direction	
the	 company	 needs	 to	 go.	 they	 are	 worthwhile	 upgrades	
from	existing	mIpS	processors	and	the	mIpS32	ISa.	they	
will	 strengthen	 mIpS’s	 competitive	 position	 against	arm,	
its	strongest	foe.		

To subscribe to microprocessor	report, phone 480.483.4441 or visit www.mpronline.com

P r i c e & Av a i l a b i l i t y

The MIPS32 M14K and MIPS32 M14Kc processors
are synthesizable cores delivered in Verilog format.
MIPS expects to ship the final RTL in February 2010.
MIPS doesn’t publicly disclose licensing fees or royal-
ties. For more information:
www.mips.com/products/processors/32-64-bit-cores/
mips32-m14k/
www.mips.com/products/processors/32-64-bit-cores/
mips32-m14kc/

