
	 © 	 I n - S t a t 	 F e b r u a r y 	 2 7 , 	 2 0 0 6 	 m I c r o p r o c e S S o r 	 r e p o r t

more	are	available	in	embedded-processor	cores	licensed	as	
synthesizable	intellectual	property	(Ip).	now	mIpS	technol-
ogies	is	adding	another	option:	the	first	licensable	processor	
cores	with	hardware-enabled	simultaneous	multithreading.

the	 new	 mIpS32	 34K	 family	 consists	 of	 four	 32-bit	
processor	 cores,	 all	 related	 to	 the	 mIpS32	 24Ke	 family	
introduced	 at	 Spring	 processor	 Forum	 2005.	 (See	 MPR
5/31/05-01,	 “White	 paper:	 the	 mIpS32	 24Ke	 core	 Fam-
ily.”)	the	key	difference	between	the	24Ke	and	34K	families	
is	pipelined	multithreading.	 Instructions	 from	as	many	as	
five	different	tasks	can	pass	through	the	nine-stage	pipeline	
of	a	34K	processor	at	the	same	time.

although	the	uniscalar	34K	can	issue	only	one	result	
per	 clock	 cycle,	 multithreading	 allows	 it	 to	 reduce	 the	
overhead	of	context	switching	and	hide	the	latency	of	slow	
operations,	 such	 as	 memory-dependent	 loads	 and	 stores.	
this	 technique	 is	 known	 as	 simultaneous	 multithread-
ing	 (Smt)	 or	 thread-level	 parallelism.	 note	 that	 for	 the	
purposes	of	this	discussion,	a	thread	can	be	any	executable	
process—even	an	operating	system—not	just	a	microthread	
within	a	program.

Multithreading Reaches a Watershed
mIpS	isn’t	the	first	company	to	use	Smt,	which	dates	to	the	
early	1990s.	(See	MPR 7/14/97-03,	“multithreading	comes	
of	age.”)	In	1999,	Dec	announced	that	alpha	21464	server	
processors	 would	 use	 Smt,	 but	alpha’s	 unpopularity	 and	
premature	demise	did	little	to	promote	the	technology.	(See	

MPR 12/6/99-01,	“compaq	 chooses	 Smt	 for	 alpha.”)	 In	
2001,	Intel	brought	Smt	to	the	mainstream	by	announcing	
Hyper-threading,	a	limited	two-way	version	of	thread-level	
parallelism	 that	 has	 appeared	 in	 several	 pentium	 4	 and	
Xeon	processors	for	pcs	and	servers.	(See	MPR 9/17/01-01,	
“Intel	embraces	multithreading.”)

more	 recently,	 embedded-processor	 architects	 have	
seized	upon	Smt	as	a	power-efficient	path	to	higher	perfor-
mance.	that’s	 the	big	attraction	for	mIpS.	multithreading	
avoids	 the	 pipeline	 duplication	 of	 superscalar	 execution	
and	the	core	duplication	of	multicore	processing,	although	
it	 may	 be	 combined	 with	 those	 and	 other	 techniques.	
In	 addition,	 thread-level	 parallelism	 is	 easy	 to	 exploit	 in	
many	kinds	of	embedded	software.	those	advantages	led	a	
startup,	ubicom,	to	introduce	a	tiny	multithreaded	packet	
processor	 in	 2003.	 (See	 MPR 4/21/03-01,	“ubicom’s	 new	
npu	Stays	Small.”)

In	 2005,	 the	 technology	 reached	 a	 watershed	 when	
Intel,	raza	microelectronics	(rmI),	and	Sun	microsystems	
introduced	powerful	processors	that	combine	multithread-
ing	with	multiple	cores,	which	is	called	chip	multithreading	
(cmt).	 (See	 MPR 5/9/05-01,	“a	 Day	 at	 the	 races,”	 MPR
5/17/05-01,	“a	 new	 mIpS	 powerhouse	arrives,”	 and	 MPR
1/3/06-01,	“Sun’s	niagara	begins	cmt	Flood.”)

not	until	now,	however,	have	aSIc	and	Soc	develop-
ers	been	able	to	license	a	multithreaded	embedded-processor	
core	 for	 their	 own	 chip	 designs.	 the	 mIpS32	 34K	 family	
fulfills	 a	 promise	 made	 at	 microprocessor	 Forum	 2003,	

MIPS ThreadS The Needle
MIPS32 34K: The First Licensable Multithreaded Processor Core

By Tom R. Halfhi l l {2/27/06-01}

microprocessor	 architects	 have	 explored	 many	 paths	 to	 high	 performance,	 includ-

ing	 high	 clock	 frequencies,	 superscalar	 pipelines,	 application-specific	 extensions,	 very	

long	 instruction	 words	 (VLIW),	 and	 multicore	 processors.	 all	 those	 techniques	 and	

reportM i c r o p r o c e s s o r
	 	T h e 	 i n s i d e r ’ s 	 g u i d e 	 T o 	 m i c r o p r o c e s s o r 	 h a r d w a r e 	

www.mpronline.com

2 mips	Threads	the	needle

	 © 	 I n - S t a t 	 F e b r u a r y 	 2 7 , 	 2 0 0 6 	 m I c r o p r o c e S S o r 	 r e p o r t

when	 mIpS	 announced	 the	 multithreading	 application-
specific	 extension	 (mt	 aSe)	 for	 future	 mIpS	 processors.	
(See	 MPR 11/10/03-01,	 “multithread	 technologies	 Dis-
closed	at	mpF.”)	mIpS	says	multithreading	can	dramatically	
improve	performance	while	preserving	 compatibility	with	
existing	single-threaded	software.

mIpS	has	already	licensed	the	34K	to	five	customers,	
two	 of	 which	 prefer	 to	 remain	 anonymous	 for	 now.	 the	
public	 customers	 are	 iVivity,	 mobileye,	 and	 pmc-Sierra.	
Georgia-based	iVivity	makes	storage	processors.	mobileye,	
based	in	the	netherlands,	is	integrating	a	34Kf	core	into	its	
future	eyeQ-2	chip,	an	embedded	controller	for	automotive	
collision-avoidance	 systems.	 pmc-Sierra,	 based	 in	 Silicon	
Valley,	is	a	longtime	mIpS	licensee	that	will	most	likely	use	
the	 34K	 in	 high-performance	 network	 and	 communica-
tions	processors.

34K Family Resembles 24KE
mIpS	is	introducing	four	members	of	the	mIpS32	34K	fam-
ily,	consistent	with	previous	variations	within	the	24Ke,	24K,	
and	 4Ke	 families	 of	 32-bit	 embedded-processor	 cores.	 as	
table	1	shows,	all	four	new	processors	share	the	same	basic	
cpu	 core,	 with	 DSp	 extensions	 inherited	 from	 the	 24Ke	
family.	Variations	within	the	34K	family	include	an	optional	
Fpu	plus	 the	option	of	adding	user-defined	extensions—a	
pro	 Series	 feature	 that	 mIpS	 calls	 corextend.	 (See	 MPR
3/3/03-01,	 “mIpS	 embraces	 configurable	 technology.”)	
both	features	affect	the	core’s	size	and	power	consumption.

the	simplest	mIpS32	34K	core	is	the	34Kc,	which	has	
neither	an	Fpu	nor	corextend.	next	comes	the	34Kf,	which	
has	 an	 Fpu,	 again	 without	 corextend.	 the	 34Kc	 pro	 has	
corextend	 but	 no	 Fpu.	 the	 highest-end	 core	 is	 the	 34Kf	
pro,	which	has	both	an	Fpu	and	corextend.	thanks	to	the	
mIpS	architecture’s	workstation/server	heritage,	the	optional	
Fpu	available	for	these	cores	is	one	of	the	best	available	for	
a	 licensable	 embedded	 processor.	 It	 supports	 single-	 and	
double-precision	 floating-point	 math	 and	 complies	 with	
the	Ieee	754	standard.	corextend	is	a	powerful	option,	too,	
although	the	configurable-processor	technology	from	com-
petitors	arc	International	and	tensilica	is	superior.

Smt	is	the	feature	that	distinguishes	the	34K	from	all	
other	licensable	embedded-processor	cores.	mIpS	took	pains	
to	add	this	capability	without	disrupting	the	well-established	
mIpS	architecture	or	exceeding	the	power	envelope	expected	
of	 an	 embedded	 processor.	 perhaps	 the	 most	 critical	 deci-
sion	 was	 the	 number	 of	 threads	 to	 support.	 In	 theory,	 the	
number	of	simultaneous	threads	is	limited	only	by	the	depth	
of	the	pipeline,	because	at	any	moment,	each	pipe	stage	can	
be	processing	an	instruction	from	a	different	thread.	How-
ever,	the	maximum	number	of	threads	isn’t	necessarily	the	
optimal	number,	especially	for	an	embedded	processor.	each	
thread	 requires	 a	 duplicate	 register	 file,	 program	 counter,	
and	other	structures	to	store	its	context	while	the	processor	
switches	from	one	thread	to	another.	this	overhead	inflates	
the	processor’s	gate	count	and	power	consumption.

at	design	 time,	 customers	may	configure	 the	34K	 to	
support	two	to	five	simultaneous	threads.	(although	a	
single-threaded	 implementation	 is	 possible,	 the	 24Ke	
is	 a	 better	 choice	 for	 applications	 needing	 only	 one	
thread.)	 the	 maximum	 of	 five	 threads	 seems	 odd,	
because	 it	 requires	 a	 three-bit	 thread	 pointer,	 which	
could	support	as	many	as	eight	threads.	mIpS	is	prob-
ably	limiting	current	implementations	of	the	34K	to	five	
threads	while	preserving	 the	option	of	 supporting	six,	
seven,	or	eight	threads	in	future	processors.

each	 thread	 requires	 what	 mIpS	 calls	 a	 thread	
context:	 a	 separate	 instantiation	 of	 all	 the	 structures	
needed	to	hold	the	user-level	state	information	of	a	pro-
cess.	 each	 thread	 context	 has	 an	 independent	 program	
counter	and	a	complete	set	of	programmer-visible	regis-
ters.	In	the	mIpS32	release	2	instruction-set	architecture	
(ISa),	 there	are	32	general-purpose	 registers	 (Gpr),	32	
bits	wide,	plus	a	64-bit	“hi/lo”	accumulator	for	saturating	
arithmetic.	mIpS32-r2	allows	developers	to	 implement	
one	or	more	shadows	of	each	Gpr	to	support	vectored	
interrupts	 or	 external	 interrupt	 controllers.	 the	 DSp	
extensions	 carried	 forward	 from	 the	 24Ke	 add	 three	
more	64-bit	accumulators	and	one	32-bit	control	register	
to	the	ISa.	In	addition,	the	34Kf	and	34Kf	pro	cores	have	
32	floating-point	registers,	64	bits	wide.

With	 so	 much	 user-level	 state	 to	 replicate	 for	
each	 thread	 context,	 it’s	 easy	 to	 see	 why	 determining	
the	 optimal	 number	 of	 simultaneous	 threads	 isn’t	 a	

������� ������ ������ ������ ������
���� ���� �������� ��������

������������ ��������� ��������� ��������� ���������
�������� ��� ��� ��� ���
������������� ��� ��� ��� ���
�������������� �������� �������� �������� ��������
������� ��� ��� ��� ���
������� ����� ����� ����� �����
������� ����� ����� ����� �����
��� ��� ��� ��� ���
��������������� ��������� ��������� ��������� ���������
������������� ������� ������� ������� �������

������ ������ ������ ������
��������������� ����������� ����������� ����������� �����������
��������������� � ��� � ���
������� ��� ��� ��� ���
��������� � � ��� ���
���������������� ������ ������ ������ ������
���������������� ������ ��� ������ ���
�������������� ����� ��� ����� ���
����������� ���� ����
������������ ��� ��� ��� ���

Table 1. Members of the new MIPS32 34K family have most features in
common, differing only by whether individual members have an FPU and/or
CorExtend. Clock frequencies and power-consumption estimates in this table
assume a core supply of 1.0V and a generic 90nm CMOS fabrication process
under worst-case conditions. The estimated core size—extracted from a full-
layout GDSII database—excludes caches and assumes a configuration support-
ing four simultaneous threads. Core-size and power-consumption estimates for
the FPU-equipped processors are not available (n/a) but will be slightly greater
than for the 34Kc.

3mips	Threads	the	needle

	 © 	 I n - S t a t 	 F e b r u a r y 	 2 7 , 	 2 0 0 6 	 m I c r o p r o c e S S o r 	 r e p o r t

casual	decision.	Developers	
working	with	the	34K	need	
to	 weigh	 the	 performance	
improvements	 of	 multi-
threading	 against	 the	 cost	
of	the	extra	logic	(more	on	
this	 later).	 an	 automated	
processor-configuration	
tool	 directs	 the	 logic	 com-
piler	 to	 add	 the	 structures	
necessary	 for	 each	 thread	
context.

Threading the Needle
Pops Bubbles
Figure	 1	 sums	 up	 the	 advantages	 of	 Smt	 explained	 in	
more	depth	in	previous	articles.	normally,	a	context	switch	
forces	 a	 processor	 to	 flush	 its	 pipeline	 and	 begin	 fetching	
instructions	 from	 the	 new	 context.	 even	 without	 a	 con-
text	switch,	pipelines	can	suffer	from	bubbles	(empty	pipe	
stages)	when	a	slow	operation	stalls	execution.	In	particular,	
cache	 misses	 create	 pipeline	 bubbles	 when	 slow	 external	
memory	forces	the	processor	to	wait	for	a	load	operation	to	
complete.	another	common	source	of	pipeline	bubbles	is	a	
mispredicted	branch	instruction.	no	matter	what	the	cause,	
bubbles	and	pipeline	flushes	waste	valuable	clock	cycles.	an	
Smt	processor	tries	to	avoid	flushes	and	fill	the	bubbles	by	
inserting	instructions	from	different	threads.

In	addition	to	the	variable	number	of	thread	contexts,	
another	design-time	option	in	34K	processors	is	what	mIpS	
calls	a	virtual	processing	element	(Vpe).	this	option	allows	
a	34K	processor	to	run	two	independent	operating	environ-
ments	simultaneously,	each	with	its	own	threads.	each	envi-
ronment	could	be	an	embedded	oS—either	two	instances	
of	 the	 same	 oS	 or	 two	 completely	 different	 operating	
systems.	alternatively,	one	or	both	Vpes	could	support	the	
application	software	on	“bare	metal,”	without	any	oS	at	all.	
(many	embedded	systems	don’t	need	the	complexity	of	an	
oS	or	use	a	custom	operating	environment.)

to	 support	 each	Vpe,	 the	processor	duplicates	 all	 the	
privileged	registers	and	structures	an	oS	might	need.	In	other	
words,	a	Vpe	holds	all	the	oS-level	state	information	of	an	
operating	environment,	just	as	a	thread	context	holds	all	the	
user-level	state	information	of	a	thread.	an	example	of	oS-
level	state	 is	 the	mmu’s	translation	 lookaside	buffer	(tLb)	
or	memory	map.	(as	with	previous	mIpS32	processors,	the	
34K	family	allows	developers	to	equip	the	mmu	with	either	
a	tLb	or	a	fixed	memory	map	for	virtual	addresses.)

Vpes	 provide	 a	 simple	 form	 of	 virtualization,	 much	
like	 the	 virtualization	 technology	 now	 appearing	 in	 x86	
server	 and	 desktop	 processors	 from	 amD	 and	 Intel.	 (See	
MPR 1/30/06-08,	“this	technology	Is	Virtually	Here	now.”)	
one	difference	is	that	embedded	oSes	need	fewer	modifi-
cations	 to	 run	 within	 their	 virtual	 compartments	 on	 34K	
processors,	because	there’s	no	hypervisor	software	layer.	to	

an	 operating	 system,	 each	 Vpe	 looks	 like	 a	 separate	 34K	
processor.	 of	 course,	 many	 embedded	 applications	 don’t	
need	Vpes,	but	some	applications	can	take	advantage	of	this	
feature.	For	example,	one	Vpe	could	run	secure	processes,	
such	 as	 encryption	 and	 electronic	 commerce,	 leaving	 the	
other	Vpe	to	handle	unsecure	tasks.	or	a	need	for	reliability	
could	determine	the	division	of	labor.

Figure	2	shows	how	a	typical	embedded	system	might	
use	two	Vpes.	In	this	example,	one	Vpe	has	two	thread	con-
texts,	allowing	it	to	run	two	simultaneous	threads,	while	the	
other	Vpe	has	three	thread	contexts,	allowing	it	to	run	three	
simultaneous	 threads.	 although	 developers	 must	 choose	
the	maximum	number	of	Vpes	and	thread	contexts	before	
logic	 synthesis,	 the	 processor	 can	 dynamically	 allocate	
threads	 to	Vpes	at	 run	 time.	mIpS	 refers	 to	 this	dynamic	
allocation	as	“binding.”

one	cost	of	using	 two	Vpes	 is	 the	overhead	of	 their	
additional	 logic:	 about	 84,000	 gates	 for	 both.	 another	
potential	 cost	 is	 larger	 caches.	 both	 operating	 environ-
ments,	each	perhaps	running	multiple	threads,	must	share	
the	same	instruction	and	data	caches.	Developers	choosing	
the	multiple-Vpe	option	should	run	simulations	with	real-
istic	workloads	to	determine	if	larger	caches	are	necessary.	

���� ������� ���������� ���� ���� ���� ���� ���� ���� ���� ���� �����������

���� ���� ���� ���� ���� ���� ������� ������ ���� ���� ���� �����������

���� ���� ������� ���������� ���� �����������������������������������

��� ���� ���� ���� ������� ������ ���� ���� ������� ������ ���� ���� ������� ������

����

Figure 1. In this graphical example of SMT, the top part of the illustration shows three color-coded instruction
streams representing different threads or processes. Each thread has gaps caused by cache misses during load
operations—gaps that would create unwanted bubbles in a conventional instruction pipeline. The bottom part
of the illustration shows how an SMT processor can fetch instructions from different threads to fill the gaps
and eliminate the bubbles. SMT requires instant (single-cycle) context switching without flushing the pipeline,
which in turn requires duplicate register files to preserve the state of each thread.

���������������
��

������ ����

��������� ��������� ��������� ��������� ���������
��

���� ����

�� �� �� �� ��

Figure 2. At design time, developers working with a 34K core can
choose to duplicate all the resources needed to run an embedded OS on
the processor, allowing it to run two operating systems simultaneously.
MIPS refers to each set of OS resources as a virtual processing element
(VPE). Each VPE can have one or more of its own thread contexts (TC),
up to a maximum of five per processor.

4 mips	Threads	the	needle

	 © 	 I n - S t a t 	 F e b r u a r y 	 2 7 , 	 2 0 0 6 	 m I c r o p r o c e S S o r 	 r e p o r t

mIpS	says	normal-size	caches	are	usually	sufficient,	because	
the	processor	can	fill	the	pipeline	with	instructions	from	a	
different	thread	context	after	a	cache	miss.

to	prevent	cache	thrashing—rarely	a	problem,	accord-
ing	to	mIpS—programmers	can	lock	individual	cache	lines	
or	 assign	 individual	 ways	 to	 particular	 thread	 contexts.	
Having	the	option	of	higher	set-associativity	might	help	in	
this	regard;	currently,	the	34K	limits	caches	to	four-way	set-
associativity.	another	alternative	is	to	stash	important	code	
or	data	in	scratchpad	ram,	which	is	a	configurable	option	
for	all	34K	processor	cores.

Thread-Priority Policies Are Configurable
any	Smt	processor	needs	a	method	of	assigning	execution	
priorities	to	threads.	It’s	particularly	 important	for	a	mul-
tithreaded	 embedded	 processor,	 because	 embedded	 pro-
grams	often	have	real-time	constraints	that	cannot	tolerate	
thread	starvation.	to	address	the	needs	of	as	many	applica-
tions	as	possible,	mIpS	allows	customers	to	determine	the	
34K’s	thread-priority	policy.

the	 34K’s	 default	 thread-priority	 manager	 obeys	 a	
round-robin	policy,	which	simply	allocates	an	equal	number	

of	clock	cycles	to	each	thread,	one	after	the	other.	In	a	
two-threaded	 implementation	 of	 the	 processor,	 each	
thread	 gets	 50%	 of	 the	 available	 clock	 cycles;	 in	 the	
maximum	 five-threaded	 implementation,	 each	 thread	
gets	 20%.	 (actually,	“thread	 priority”	 is	 an	 oxymoron	
with	a	round-robin	manager,	because	no	thread	enjoys	
priority	over	any	other	thread.)	the	round-robin	man-
ager	is	always	built	into	the	34K	core.

For	 more-sophisticated	 multithreaded	 applica-
tions,	the	34K	has	an	optional	policy	manager	that’s	user	
programmable.	 this	 design-time	 option	 adds	 a	 mere	
5,000	gates	to	the	core,	so	it’s	an	attractive	option.	the	
programmable	policy	manager	allows	an	oS,	the	appli-
cation	software,	or	custom	logic	to	allocate	clock	cycles	

to	 different	 threads	 in	 various	 predefined	 ways.	 Further-
more,	software	programmers	and	logic	designers	can	define	
their	 own	 methods	 of	 managing	 and	 assigning	 priorities.	
the	 programmable	 policy	 manager	 is	 obviously	 the	 most	
flexible	thread-priority	solution,	because	it	allows	priorities	
to	change	dynamically	at	 run	 time,	according	 to	operating	
conditions.	Developers	must	decide	whether	 the	program-
mable	manager	is	worth	the	additional	gates—the	decision	
is	immutable	after	the	design	is	committed	to	silicon.

as	 table	 2	 shows,	 mIpS	 has	 added	 only	 eight	 new	
instructions	to	the	mIpS32-r2	ISa	to	support	multithread-
ing.	 most	 of	 the	 instructions	 are	 self-explanatory:	 they	
enable	or	disable	multithreaded	execution,	Vpes,	or	thread	
contexts.	 two	 instructions	 (MTTR	 and	 MFTR)	 are	 special	
privileged	 operations	 that	 allow	 a	 kernel	 thread	 to	 access	
the	 registers	 and	 other	 state	 information	 of	 a	 different	
thread.	(We	will	describe	interprocess	communications	for	
user-level	 software	 later.)	 the	 ISa	 has	 no	 special	 registers	
associated	with	multithreading	 itself,	other	 than	 the	usual	
architectural	registers	for	each	thread	context.

In	addition	to	new	instructions,	the	34K	also	has	new	
instruction-dispatch	queues	and	an	extra	stage	near	the	front	

of	 the	 pipeline.	 each	 thread	 context	 has	 an	 eight-
entry	 dispatch	 queue	 that	 holds	 recently	 fetched	
instructions.	 (branch	 instructions	 are	 decoded	 at	
this	point,	but	not	most	other	types	of	instructions.)	
these	 queued	 instructions	 wait	 until	 the	 thread-
priority	 manager	 approves	 their	 dispatch	 to	 a	 func-
tion	 unit.	 the	 new	 pipeline	 stage,	 inserted	 after	 stage	
2,	 assigns	 each	 instruction	 to	 a	 thread	 context.	 as	
Figure	3	shows,	the	34K	pipeline	is	nine	stages	deep,	
compared	with	eight	stages	in	the	24Ke.

What	 Figure	 3	 doesn’t	 show	 is	 the	 pipeline	
detour	 for	 mIpS16e	 instructions.	 Like	 almost	 all	
32-bit	 embedded	processors,	 the	34K	has	a	 subset	
of	 16-bit	 instructions	 for	 conserving	 memory.	
Supporting	16-	and	32-bit	instructions	in	a	multi-
threaded	processor	caused	some	headaches	for	the	
34K’s	 designers	 (“We	 almost	 caught	 our	 hair	 on	
fire,”	the	engineering	director	told	MPR),	but	they	
found	a	solution.

������
���

�� �� ��

������������������
������������������

��� �������������

�� �� �� �� �� ����
��
��
��

��
��

��
�����

��

��
�����

Figure 3. The MIPS32 34K and 24KE processors are close cousins, but the 34K
has a slightly deeper pipeline to support simultaneous multithreading. The 34K’s
extra stage—here labeled IT (instruction-fetch third)—assigns a thread context to
the most recently fetched instruction. This assures that instructions from different
threads always reference the correct registers and other state information associ-
ated with their contexts.

����������� ����������� ��������
��� ��������������������� �
��� ���������������������� �
���� ���������� �������������������������������
���� ����������� �
���� ��������������������� �
����� ���������������������� �
���� ����������������������� �����������������������������������
���� ������������������������� ������������������������������������

Table 2. MIPS32 34K processors add eight new instructions to the MIPS32
Release 2 instruction-set architecture. These instructions allow programmers to
enable or disable multithreading, enable or disable the optional virtual process-
ing elements (VPE), enable or disable individual threads, and access registers in
different thread contexts.

5mips	Threads	the	needle

	 © 	 I n - S t a t 	 F e b r u a r y 	 2 7 , 	 2 0 0 6 	 m I c r o p r o c e S S o r 	 r e p o r t

every	fetch	from	the	instruction	cache	brings	64	bits	
into	the	pipeline—either	two	32-bit	instructions	or	four	16-
bit	instructions.	If	a	particular	thread	is	running	in	mIpS16e	
mode,	it	detours	through	a	subpipeline	for	two	extra	stages:	
Ir	 (instruction	 recode)	and	 IK	(instruction	kill).	 In	 those	
stages,	the	processor	expands	16-bit	instructions	into	32-bit	
operations.	the	subpipeline	rejoins	the	normal	pipeline	at	
the	 new	 It	 stage.	at	 that	 point,	 all	 the	 instructions	 begin	
entering	the	thread-dispatch	queues.

Two Methods of Interthread Communication
Sometimes	it’s	necessary	for	threads	to	communicate	with	
each	other	by	passing	parameters	back	and	forth.	However,	
application-level	 threads	 cannot	 communicate	 directly,	
because	 instructions	 in	 one	 thread	 context	 aren’t	 allowed	
to	 access	 registers	 in	 another	 context.	 (the	 previously	
described	MTTR	and	MFTR	instructions	are	privileged	kernel-	
level	 instructions.)	 For	 that	 reason,	 the	 34K	 provides	 two	
general	methods	for	interthread	communication.

one	 method	 is	 already	 available	 in	 all	 mIpS-compatible	
processors:	 the	 common	 load-link/store-conditional	 (LL/
Sc)	instruction	sequence.	this	is	a	substitute	for	an	atomic	
read-modify-write	operation,	which	is	more	often	found	in	
cISc	instruction	sets.	In	an	LL/Sc	sequence,	the	processor	
executes	 a	 load-link	 instruction,	 which	 returns	 the	 value	
currently	stored	at	a	particular	memory	location.	next,	the	
processor	 executes	 a	 conditional	 store	 instruction,	 which	
stores	 a	 new	 value	 at	 the	 location	 only	 if	 another	 thread	
hasn’t	 changed	 the	 value	 since	 the	 load-link.	 using	 this	
method,	 multiple	 threads	 can	 pass	 parameters	 by	 using	
memory	locations	as	mailboxes.

the	 drawback	 of	 the	 LL/Sc	 method	 is	 that	 it’s	 not	
truly	 atomic—another	 thread	 can	 easily	 change	 the	 value	
between	the	moments	of	the	load-link	and	the	conditional	
store.	 programs	 must	 repeatedly	 try	 to	 execute	 the	 LL/Sc	
sequence	 within	 a	 loop	 until	 it	 completes.	 When	 several	
threads	are	active,	all	of	them	looping	in	this	manner,	they	
can	 compete	 with	 each	 other	 and	 waste	 numerous	 clock	
cycles	on	their	initial	load-links.

For	 that	 reason,	 the	 34K	 offers	 an	 alternative:	 an	
interthread	 communication	 unit	 with	 lockable	 mailboxes.	
this	 is	 a	 configurable	 design-time	 option.	 the	 mailboxes	
are	memory-mapped	32-bit-wide	 locations	 that	programs	
can	access	with	standard	load/store	instructions.	although	
mailboxes	appear	to	have	conventional	memory	addresses,	
they	are	synthesized	as	flip-flops	in	the	core.	at	design	time,	
developers	can	configure	the	mailboxes	as	single-entry	slots	
(like	registers)	or	as	FIFo	buffers.	mIpS	provides	reference	
code	for	up	to	16	single-entry	mailboxes	or	up	to	16	four-
entry	 FIFos,	 but	 Verilog-savvy	 developers	 can	 create	 any	
number	of	mailboxes	or	FIFos	they	need.

When	 a	 thread	 reads	 a	 mailbox	 (using	 a	 normal	
load	instruction),	 the	processor	blocks	other	threads	from	
accessing	the	mailbox—the	memory	address	is	locked.	only	
one	 thread	at	a	 time	can	win	the	 lock.	When	the	winning	

thread	finishes	writing	a	new	value	into	the	mailbox	(using	
a	normal	store	instruction),	the	processor	unlocks	the	mail-
box	and	allows	other	threads	to	compete	for	the	lock.	this	
method	saves	clock	cycles	over	the	LL/Sc	method,	because	
a	 locked	 mailbox	 prevents	 other	 threads	 from	 executing	
their	initial	load-link	instructions,	so	they	don’t	waste	time	
reading	a	mailbox	they’re	not	allowed	to	modify.	In	effect,	
the	 locking	 mailboxes	 bring	 an	 atomic	 read-modify-write	
capability	to	the	mIpS	architecture	for	the	first	time.

Making Performance Trade-Offs
Smt	can	add	almost	200,000	gates	to	a	34K	processor,	espe-
cially	if	developers	lavishly	indulge	in	all	the	fancy	options:	
the	 maximum	 of	 five	 thread	 contexts,	 the	 maximum	 of	
two	 Vpes,	 a	 programmable	 thread-priority	 manager,	 an	
interthread	communication	unit,	and	numerous	mailboxes.	
not	to	mention	all	the	other	options	available	for	the	34K:	
a	 sophisticated	 Fpu,	 corextend,	 a	 coprocessor	 interface,	
scratchpad	 memory,	 and	 tLbs	 instead	 of	 fixed	 memory	
maps	for	the	mmus.

anyone	who	has	shopped	for	a	new	car	knows	the	feel-
ing.	the	question	is	whether	the	higher	performance	is	worth	
the	 additional	 design	 complexity,	 silicon,	 and	 power	 con-
sumption.	Does	the	application	call	for	a	Lotus	or	a	prius?

although	the	34K	leans	toward	high	throughput,	not	
low	 power	 consumption,	 multithreading	 adds	 new	 twists	
to	 the	equation.	 In	some	embedded	applications,	a	multi-
threaded	34K	processor	might	replace	two	or	more	smaller	
processor	 cores,	 resulting	 in	 lower	 overall	 system	 power.	
this	 is	 particularly	 likely	 if	 the	 34K	 has	 two	Vpes,	 allow-
ing	 it	 to	run	 two	different	operating	systems	or	 to	 strictly	
isolate	two	different	tasks.	also,	keep	in	mind	that	the	34K	
has	 the	same	DSp	extensions	and	corextend	options	 that	
the	24Ke	has.	With	its	signal-processing	features	and	some	
well-crafted	application-specific	instructions,	the	34K	could	
make	a	separate	DSp	or	aSIc	redundant.

Smt	 allows	 a	 processor	 to	 do	 more	 work	 at	 a	 given	
clock	 speed,	 so	 a	 multithreaded	 34K	 processor	 could	 save	
power	 over	 a	 single-threaded	 24Ke	 processor	 running	 the	
same	workload	at	a	higher	clock	speed.	even	after	accounting	
for	 the	 additional	 logic	 Smt	 requires,	 the	 lower-frequency	
34K	 chip	 could	 be	 about	 the	 same	 size	 as	 the	 higher-	
frequency	 24Ke	 chip,	 because	 slower	 memory	 arrays	 are	
denser	than	faster	memories.

another	consideration	is	that	a	34K	could	save	power	
by	 using	 the	 thread-priority	 manager	 to	 allocate	 just	
enough	clock	cycles	for	a	real-time	task,	instead	of	running	
at	 a	 higher	 frequency	 to	 guarantee	 real-time	 performance	
under	 any	 conditions.	 In	 sum,	 developers	 can	 use	 Smt	
to	 achieve	 higher	 overall	 throughput,	 lower	 overall	 power	
consumption,	or	a	combination	of	both	goals.

Measuring the Cost of Performance
mIpS	has	some	benchmark	results	favorably	comparing	the	
performance	of	a	dual-threaded	34K	with	a	single-threaded	

6 mips	Threads	the	needle

	 © 	 I n - S t a t 	 F e b r u a r y 	 2 7 , 	 2 0 0 6 	 m I c r o p r o c e S S o r 	 r e p o r t

24Ke.	 naturally,	 one	 would	 expect	 mIpS	 to	 choose	 an	
example	showing	the	34K	in	the	best	light,	but	the	bench-
marks	are	interesting	nonetheless.	For	this	test,	mIpS	com-
pared	 a	 24Ke	 processor	 with	 a	 similarly	 configured	 34K	
processor	that	has	two	Vpes	and	two	thread	contexts.	both	
processors	had	16Kb	instruction	and	data	caches.	the	test,	
conducted	 on	 a	 cycle-accurate	 instruction-level	 simulator,	
consisted	 of	 two	 packet-processing	 programs.	as	 Figure	 4	
shows,	the	34K	was	60%	faster	than	the	24Ke.

another	interesting	result	of	this	test	was	that	the	34K	
missed	 the	 cache	 slightly	 more	 often	 than	 the	 24Ke	 did.	
the	34K’s	miss	rate	was	5.16%,	compared	with	4.41%	for	
the	 24Ke.	 (those	 miss	 rates	 are	 much	 lower	 than	 would	
be	 expected	 when	 running	 real-world	 software,	 probably	
because	 there	 wasn’t	 enough	 packet	 data	 to	 fully	 exercise	

the	memory	system.)	Despite	the	34K’s	slightly	higher	miss	
rate,	it	managed	to	execute	0.61	instructions	per	cycle	(Ipc)	
in	 this	 test,	 compared	 with	 only	 0.37	 Ipc	 for	 the	 24Ke.	
these	statistics	suggest	two	conclusions.	the	34K	probably	
missed	the	cache	more	often	because	its	two	threads	shared	
a	 cache	 no	 larger	 than	 the	 single-threaded	 24Ke’s	 cache	
(16Kb).	but	multithreading	worked	as	intended:	when	the	
34K	suffered	a	cache	miss,	it	was	able	to	execute	instructions	
from	its	other	thread.

cpu	 architects	 can	 do	 many	 things	 to	 improve	 the	
performance	of	a	processor,	but	is	the	improvement	worth	
the	 extra	 gates?	 In	 this	 (admittedly	 limited)	 example,	
the	 answer	 is	 yes.	 the	 dual-threaded	 34K	 processor	 was	
60%	 faster	 than	 the	 single-threaded	 24Ke	 processor,	 but	
it	 requires	 only	 about	 14%	 more	 silicon.	 this	 estimate	 is	
based	on	gate	counts	extracted	from	post-layout	models	of	
both	cores	as	configured	for	the	packet	benchmarks.	using	
die-area	data	that	mIpS	provided	for	a	0.13-micron	fabrica-
tion	process,	MPR	calculates	that	this	configuration	of	the	
34K	 core	 has	 694,000	 gates,	 and	 the	 similarly	 configured	
24Ke	core	has	607,000	gates.

note	that	caches	alone	account	for	the	area-equivalent	
of	290,000	of	those	gates,	and	the	common	hardware	in	the	
cpu	cores	is	250,000	gates.	the	important	data	is	the	extra	
logic	 required	 to	 support	 multithreading.	 MPR	 estimates	
that	the	threading	logic	(such	as	the	thread-policy	manager	
and	 interthread	 communication	 unit)	 adds	 14,000	 gates;	
the	 structures	 required	 for	 oS-level	 state	 information	 in	
two	 Vpes	 add	 40,000	 gates;	 and	 the	 structures	 required	
for	user-level	state	information	in	two	thread	contexts	add	
23,000	gates.	Figure	5	shows	a	breakdown	of	the	gates	in	the	
34K	and	24Ke	cores,	based	on	their	configurations	for	the	
packet	benchmarks.

Alternative Paths to High Performance
With	the	34K	processor,	mIpS	is	taking	a	very	different	path	
to	higher	performance	than	other	processor-Ip	vendors	are	
taking.	the	34K	is	the	world’s	first	licensable	multithreaded	
embedded-processor	 core,	 and	 it’s	 also	 the	 most	 configu-
rable	core	available	from	mIpS.	In	contrast,	arm’s	highest-	
performance	 processor	 core,	 the	 new	 cortex-a8,	 bets	 on	
two-way	 superscalar	 pipelines	 instead	 of	 multithreading.	
arc	 and	 tensilica	 are	 strong	 believers	 in	 user-defined	
extensions—a	capability	available	in	some	mIpS	processors,	
including	the	34K	pro	series,	but	not	as	heavily	promoted	
by	mIpS.	all	 four	companies	have	customers	using	multi-
core	designs	to	reach	higher	performance.

at	 first	 glance,	 it’s	 surprising	 that	 mIpS	 has	 chosen	
multithreading	over	superscalar	execution.	today’s	embed-
ded	mIpS	processors	are	descendants	of	the	mIpS	worksta-
tion/server	 processors	 of	 the	 late	 1980s	 and	 1990s.	 mIpS	
introduced	 its	 first	 single-chip	 superscalar	 processor,	 the	
r10000,	in	1995.	the	r10000	was	a	four-way	out-of-order	
design	with	speculative	execution,	still	 impressive	11	years	
later.	 considering	 that	 history,	 one	 might	 expect	 mIpS	 to	

���������
�����

��������
�����

����������
�����

��������

������
������

���������� �����������

�������

�������

�������

�������

�������

�������

�������

�������

�

�������������������������������

Figure 5. This chart shows the number of gates required for two simi-
larly configured 34K and 24KE processor cores—the same configurations
MIPS used to obtain the benchmark results in Figure 4. With two thread
contexts and two VPEs, the 34K core has 14% more gates than the
single-threaded 24KE, but it’s 60% faster in the packet-processing tests.

����������

�������

�������

�������

�������

�������

������

�

����������������������������

�����������

Figure 4. MIPS ran a packet-flow test and a packet-forwarding test
(open shortest path first) on simulations of similarly configured 34K
and 24KE processors. Parallelism is relatively easy to exploit in packet
forwarding, which plays to the strength of the multithreaded 34K. This
chart shows the number of clock cycles required to complete the tests,
so a shorter bar is better—the 34K is 60% faster than the 24KE.

7mips	Threads	the	needle

	 © 	 I n - S t a t 	 F e b r u a r y 	 2 7 , 	 2 0 0 6 	 m I c r o p r o c e S S o r 	 r e p o r t

use	the	familiar	technique	of	superscalar	pipelining	instead	
of	a	less	popular	technique	like	multithreading.

However,	 mIpS	 concludes	 that	 Smt	 is	 a	 more	 gate-
efficient	 path	 to	 higher	 performance	 than	 superscalar	
execution	is.	perhaps	this	reflects	mIpS’s	greater	experience	
with	 superscalar	 design.	 (the	 cortex-a8	 is	 arm’s	 first	
superscalar	 core.)	 both	 approaches	 have	 significant	 over-
head	 in	 extra	 logic—duplicate	 pipelines	 for	 superscalar,	
duplicate	register	files	for	multithreading.	but	multithread-
ing	 can	 deliver	 more	 bang	 for	 the	 buck	 than	 superscalar	
can,	especially	in	an	embedded	processor.	and	the	ability	to	
switch	contexts	in	a	single	clock	cycle	without	flushing	the	
pipeline	has	obvious	advantages	in	real-time	systems.

multicore	processors	have	even	more	duplication	than	
superscalar	or	multithreaded	processors,	because	they	rep-
licate	entire	cores,	not	just	pipelines	or	registers.	mIpS	says	
a	multithreaded	processor	can	beat	a	multicore	design—to	
a	point,	at	least—after	accounting	for	the	extra	die	area	and	
power	consumption	of	a	multicore	chip.	both	approaches	
rely	on	finding	enough	parallelism	in	the	software	to	justify	
the	additional	hardware.

table	 3	 compares	 the	 mIpS32	 34K	 processor	 with	
the	 mIpS32	 24Ke,	 arc	 700,	 arm	 cortex-a8,	 tensilica	
Xtensa	 6,	 and	 tensilica	 Xtensa	 LX.	 all	 are	 licensable	 32-
bit	 embedded-processor	 cores,	 and	 all	 are	 the	 highest-	
performance	 examples	 of	 their	 architectures.	 If	 low	 power	
is	 more	 important	 than	 high	 throughput,	arc,	arm,	 and	
mIpS	offer	much	smaller	cores	than	those	shown	here,	and	a	
minimal	configuration	of	tensilica’s	cores	will	serve	the	same	
purpose.	We	derived	the	core	sizes	and	power	numbers	in	the	

table	from	the	best	available	vendor	data,	but	take	them	with	
a	grain	of	silicon—there	are	 too	many	variables	 to	support	
quick	conclusions.	With	the	exception	of	the	cortex-a8,	all	
these	cores	have	numerous	configuration	options	that	greatly	
affect	their	size	and	power.

multithreading	makes	the	34K	unique	among	licens-
able	 processor	 cores.	 but	 customers	 want	 performance,	
not	 novelty.	 Last	 year,	 arm	 encroached	 on	 mIpS’s	 high-	
performance	 territory	 with	 the	 superscalar	 cortex-a8,	
and	now	mIpS	is	responding	with	the	multithreaded	34K.	
Without	a	doubt,	superscalar	pipelining	is	the	better-under-
stood	 technology.	 even	 undergraduate	 computer-science	
students	write	compilers	for	superscalar	microarchitectures.	
Simultaneous	multithreading	is	 less	understood	and	poses	

P r i c e & Av a i l a b i l i t y

MIPS Technologies is licensing the MIPS32 34K fam-
ily of processor cores now. The four members of the
family are the 34Kc, 34Kf, 34Kc Pro, and 34Kf Pro.
All are available as synthesizable IP in Verilog. Like
most processor-IP vendors, MIPS doesn’t disclose
up-front license fees or chip royalties, which are
negotiable. For more information about the MIPS32
34K family, visit www.mips.com/content/Products/
Cores/32-BitCores/MIPS3234K/ProductCatalog/P_
MIPS3234KFamily/productBrief.

Table 3. All these processors are high-performance IP cores based on 32-bit RISC architectures. Their pipelines reveal the starkest differences.
Most processors in this class have simple uniscalar pipelines, but MIPS has introduced the first core with simultaneous multithreading, whereas
ARM is aiming for high performance with two-way superscalar execution. ARC and Tensilica rely more heavily on user-defined application-specific
extensions. Core-size and power-consumption numbers are vendor estimates, based mostly on simulations. *The ARC 700 has some built-in DSP
instructions; more powerful extensions are optional. †Assumes a generic 130nm fabrication process. ‡Assumes a generic 90nm process. **Assumes
a generic 65nm process.

������� ���� ���� ��� ��� ��������� ���������
���������� ����������� ������� ��������� �������� ���������

������������ ��������� ��������� ��������� ����� ������ ������
������������� ������������������� �������� �������� �������������� �������� ��������

��������������� ��������� ��������� ����������� ��������� ���������
�������������� �������� �������� �������� ��������� �������� �������������
�������������� ������� ������� ������� ������� � �
���������� ����� ����� ����� ������ ����� �����
���������� ����� ����� ����� ������ ����� �����
�������� � � � ���� � �
�������� � � � �������� � �
��������������� �������������� ���������������� ���� ��� ���� ����
������������ ������� ������� ������� ������� ������� �������
����������� ������� ������� ������� ������� ������� �������
�������������� ��� ��� ��������� ��� � ��������
��������������� � � � ��� � �
��� �������� �������� �������� �������� �������� ��������

���������� ���������� ������������� ���������� ������� �������
��� ��� ��� ��� ��� �������� �
��������� ������� ���� ������ ������������� ����������� �����������
���������������� ������������� ������������������ ��������� ������������ ��������� ���������
��������� ������� ������������ ������� ������� ������� �������
������������ ���� ���� ���� ���� ���� ����

8 mips	Threads	the	needle

	 © 	 I n - S t a t 	 F e b r u a r y 	 2 7 , 	 2 0 0 6 	 m I c r o p r o c e S S o r 	 r e p o r t

a	greater	challenge	 for	programmers	wanting	 to	make	 the	
most	of	the	34K’s	best	capabilities.

However,	multithreading	is	more	versatile	than	supers-
calar	execution.	as	implemented	in	the	34K,	it	allows	a	pro-
cessor	to	execute	multiple	threads	with	strict	task	isolation,	

to	run	multiple	operating	systems,	 to	 instantly	switch	con-
texts,	 and	 to	 precisely	 allocate	 clock	 cycles	 among	 various	
tasks—extremely	valuable	 capabilities	 for	 embedded	appli-
cations.	 the	 34K	 is	 unique	 for	 a	 purpose.	 It’s	 a	 significant	
advance	for	embedded-processor	cores.	

To subscribe to microprocessor	report, phone 480.483.4441 or visit www.mpronline.com

