
HDL, RTL and FPGA: Lab 2
Review of your next steps

in designing digital hardware

H R F

Yuri Panchul, Senior Hardware Design Engineer, MIPS
Lecture for Innopolis University - 2018-02-01

Refreshing
knowledge from
Lab 1

Hardware/software dualism - an informal example

Microcontroller (embedded chip, ASIC, SoC)

CPU
Designed
in Verilog

Executes
instructions

Memory
Contains a program,
a sequence of instructions

Compiled from C
or a similar language

18800005
00001025
00451021
0044182a
5460fffe
00451021
03e00008
00000000

Hardware/software dualism - an informal example / 2

Microcontroller (embedded chip, ASIC, SoC)

CPU
Memory
FLASH
18800005
00001025
00451021
0044182a

Memory
RAM

I/O device
controllers
(designed using Verilog too)

Software: from C to processor instructions
C:

int f (int a, int b)
{
 int s = 0;

 while (s < a)
 s += b;

 return s;
}

Assembly:

sum:
 blez $4, exit
 move $2, $0

 addu $2, $2, $5
loop:
 slt $3, $2, $4
 bnel $3, $0, loop
 addu $2, $2, $5
exit:
 jr $31
 nop

Machine
code

18800005
00001025

00451021

0044182a
5460fffe
00451021

03e00008
00000000

Circuits: from Verilog to transistors (simplified)
module counter
(
 input clock,
 input reset,
 output logic [1:0] n
);
 always @(posedge clock)
 begin
 if (reset)
 n <= 0;
 else
 n <= n + 1;
 end
endmodule

What is an FPGA? A simplified explanation
A matrix of cells with
changeable function

One cell can become AND,
another OR, yet another -
one bit of memory

An FPGA does not contain
a fixed CPU, but can be
configured to work as a
CPU

A picture from
http://jjmk.dk/MMMI/PLDs/FPGA/fpga.htm

From combination
to sequential logic

From Lab 1:
Combinational logic

● The outputs of the group of
components depend only on inputs

● You set inputs and get outputs after
some time

● This group is called “a
combinational cloud”

● Used to calculate logic and
arithmetical functions

module top
(
 input a, b, c, d,
 output e, f
);

 assign e = a & (b | c);
 assign f = ~ (c ^ d);

endmodule

Computation in combinational logic is not instant

● Before the results are ready, the
outputs may contain random
values.

● How to find when the results are
ready and can be used by the
next step of computation?

● We can synchronize the
computation with a special signal
called clock.

The picture is from Digital Design and Computer
Architecture, 2nd Edition by David Harris and Sarah Harris.
Elsevier, 2012

Clock is a periodic signal with square waveform

● This period is long enough for any combinational computation to complete.

● Clock frequency = 1 / period.

● Clock is usually generated by a crystal oscillator (find it on the board).

Period

Negative edgePositive edge

A circuit synchronized with a clock is called sequential

● The sequential circuit go through a sequence of states.

● The current state is stored in D-flip-flops.

● A new state is computed based on the previous state and the circuit’s inputs.

● A new state is recorded into D-flip-flops when clock goes from low to high.

● The outputs are computed based on the inputs and the current state

Huffman model of sequential circuits

Combinational
Cloud

State
Registers

Inputs

Clock

Outputs

What the sequential logic allows us to do

● Counting

● Memorizing the information

● Adding new data and
repeating the computation

● Waiting for an event coming
from outside the device

● In short: sequential logic is
what makes computer to do
interesting things

A picture of John Searle’s Chinese room thought experiment is from
http://deskarati.com/2014/07/01/john-searles-chinese-room-thought-experiment

The Exercises

Lab 2 exercises

1. The function of D-flip-flop, the basic brick of sequential design

2. Counter, a combination of combinational and sequential

3. Connecting flip-flops back-to-back to make a shift register

4. Finite State Machine (FSM) for sequence recognition

5. The application of FSM for interfacing sensors

6. The concept of pipelining

7. Looking forward schoolMIPS and MIPSfpga

D-flip-flop records the data at the end of clock cycle

● “Always at positive edge of clk store
the value of signal d in a D-flip-flop
inferred by variable q. q is also
connected to the output”.

● always block is similar to the initial
block, however it is evaluated on
every event described after @.

● The assignment <= is called
non-blocking, it will take effect after all
current always blocks get evaluated

Source https://github.com/MIPSfpga/digital-design-lab-manual/blob/master/lab_02/src/04_d_flip_flop/d_flip_flop.v

https://github.com/MIPSfpga/digital-design-lab-manual/blob/master/lab_02/src/04_d_flip_flop/d_flip_flop.v

Reset signal
guarantees
the initial state

● This design uses reset
active low (“negedge
rst_n”), some others use
reset active high.

● Reset is necessary for
control signals, so the
device does not act
erratically on power-up.

Source https://github.com/MIPSfpga/digital-design-lab-manual/blob/master/lab_02/src/06_dff_with_async_rst_n/dff_async_rst_n.v

https://github.com/MIPSfpga/digital-design-lab-manual/blob/master/lab_02/src/06_dff_with_async_rst_n/dff_async_rst_n.v

A group of
D-flip-flops is
called a register.
● Do not confuse with

Verilog reg or CPU
registers in
programming.

● We can parameterize the
number of D-flip-flops in
a register using Verilog
parameter declaration.

Source https://github.com/MIPSfpga/digital-design-lab-manual/blob/master/lab_02/src/08_dff_parameterized/dff_async_rst_n_param.v

https://github.com/MIPSfpga/digital-design-lab-manual/blob/master/lab_02/src/08_dff_parameterized/dff_async_rst_n_param.v

Register keeps the value during the cycle

Two registers back-to-back delay for two cycles

Compare

Generating and using clock in a testbench

You can also use clock to schedule
assigning stimuli, the values for the
DUT ports (DUT = Design under Test).

Source https://github.com/MIPSfpga/digital-design-lab-manual/blob/master/lab_10/src/lab_10_1_pow_5/01_sim_pow_5/testbench.v

https://github.com/MIPSfpga/digital-design-lab-manual/blob/master/lab_10/src/lab_10_1_pow_5/01_sim_pow_5/testbench.v

Adder + Register
= Counter

● A group of D-flip-flops is
called a register.

● Do not confuse with
Verilog reg or CPU
registers in programming.

● In this code the result of
addition is stored to use in
the next clock cycle.

Source https://github.com/yuri-panchul/2017-tomsk-novosibirsk-astana/blob/master/pre_event_drafts/terasic_de10_lite/08_counter/top.v

https://github.com/yuri-panchul/2017-tomsk-novosibirsk-astana/blob/master/pre_event_drafts/terasic_de10_lite/08_counter/top.v

Register contains 0, it gets propagated to the adder.

0 enters the adder. The adder’s output is not stable yet.

The adder computed 0 + 1 = 1. Register still contains 0.

Positive edge of the clock is coming. Register is still 0.

The aperture time. Register is about to store 1.

Register recorded 1 and is about to propagate it outside.

The current state is 1, it gets propagated to the adder.

1 enters the adder. The adder’s output is not stable yet.

The adder computed 1 + 1 = 2. Register still contains 1.

Positive edge of the clock is coming. Register is still 1.

The aperture time. Register is about to store 2.

Register recorded 2 and is about to propagate it outside.

The current state is 2, it gets propagated to the adder.

Finite State Machine, the decision maker
● Let’s implement an example of FSM that recognizes

sequences.

● We got this example from Digital Design and Computer
Architecture by David Harris and Sarah Harris, 2012.

● “A snail crawls down a paper tape with 1’s and 0’s on it.
The snail smiles whenever the last two digits it has
crawled over are 01. Design a state machine of the snail’s
brain.”

● FSMs are special cases of Huffman sequential circuits.

● Mealy FSM uses inputs directly to compute outputs,
Moore’s FSM does not.

FSM designers use state transition diagrams

● Circles designate states.

● Arcs designate transitions depending on inputs.

● For Mealy FSM arcs indicate inputs / outputs.

Coding FSMs in Verilog - State register

Source https://github.com/MIPSfpga/digital-design-lab-manual/blob/master/lab_08/src/lab8.v

https://github.com/MIPSfpga/digital-design-lab-manual/blob/master/lab_08/src/lab8.v

Coding FSMs in Verilog - Next state logic

Source https://github.com/MIPSfpga/digital-design-lab-manual/blob/master/lab_08/src/lab8.v

https://github.com/MIPSfpga/digital-design-lab-manual/blob/master/lab_08/src/lab8.v

Examples: interfaces to sensors
● Ultrasonic distance sensor

○ https://github.com/yuri-panchul/2017-year-end/blob/master/terasi
c_de10_lite/hc_sr04_receiver.v

● Digilent Ambient Light Sensor with SPI protocol
○ https://github.com/yuri-panchul/2017-tomsk-novosibirsk-astana/bl

ob/master/parts_and_examples/pmod_als_spi_receiver/pmod_al
s_spi_receiver.v

https://github.com/yuri-panchul/2017-year-end/blob/master/terasic_de10_lite/hc_sr04_receiver.v
https://github.com/yuri-panchul/2017-year-end/blob/master/terasic_de10_lite/hc_sr04_receiver.v
https://github.com/yuri-panchul/2017-tomsk-novosibirsk-astana/blob/master/parts_and_examples/pmod_als_spi_receiver/pmod_als_spi_receiver.v
https://github.com/yuri-panchul/2017-tomsk-novosibirsk-astana/blob/master/parts_and_examples/pmod_als_spi_receiver/pmod_als_spi_receiver.v
https://github.com/yuri-panchul/2017-tomsk-novosibirsk-astana/blob/master/parts_and_examples/pmod_als_spi_receiver/pmod_als_spi_receiver.v

Synthesis tools recognize FSMs and optimize them

The concept of pipelining - 1

The concept of pipelining - 2

The concept of pipelining - 3

Source https://github.com/MIPSfpga/digital-design-lab-manual/tree/master/lab_10/src/lab_10_1_pow_5

https://github.com/MIPSfpga/digital-design-lab-manual/tree/master/lab_10/src/lab_10_1_pow_5

CPU pipeline, best-known example of the pipelining principle

The execution unit of MIPS M5150 CPU core processes the stream of instructions

Learn about CPUs using schoolMIPS and MIPSfpga

● schoolMIPS is as
simple RISC CPU as
you can get, use it to
learn the basics.

● MIPSfpga is to
experiment with an
industrial core, it uses a
variant of MIPS M5150
from the previous slide

Thank
You!

