
 An Introduction to Digital Design Using a
Hardware Design Language to Describe
and Model a Pipeline and More Pipelining
Illustrations

This CD section covers hardware decription langauges and then a dozen examples
of pipeline diagrams, starting on page 4.12-16.

As mentioned in Appendix C, Verilog can describe proces sors for simulation
or with the intention that the Verilog specifi cation be synthesized. To achieve
acceptable synthesis results in size and speed, a behavioral specifi cation intended
for synthesis must carefully delineate the highly combinational portions of the
design, such as a datapath, from the control. The datapath can then be synthesized
using available libraries. A Verilog specifi ca tion intended for synthesis is usually
longer and more complex.

We start with a behavioral model of the 5-stage pipeline. To illustrate the dichot-
omy between behavioral and synthesizeable designs, we then give two Verilog
descriptions of a multiple-cycle-per-instruction MIPS processor: one intended
solely for simulations and one suitable for synthesis.

Using Verilog for Behavioral Specifi cation with
Simulation for the 5-Stage Pipeline

Figure 4.12.1 shows a Verilog behavioral description of the pipeline that handles
ALU instructions as well as loads and stores. It does not accommodate branches
(even incorrectly!), which we postpone including until later in the chapter.

Because Verilog lacks the ability to defi ne registers with named fi elds such as
structures in C, we use several independent registers for each pipeline register. We
name these registers with a prefi x using the same convention; hence, IFIDIR is the
IR portion of the IFID pipeline register.

This version is a behavioral description not intended for syn thesis. Instructions
take the same number of clock cycles as our hardware design, but the control
is done in a simpler fashion by repeatedly decoding fi elds of the instruction in
each pipe stage. Because of this difference, the instruction register (IR) is needed
throughout the pipeline, and the entire IR is passed from pipe stage to pipe stage.
As you read the Verilog descriptions in this chapter, remember that the actions in
the always block all occur in parallel on every clock cycle. Since there are no block-
ing assignments, the order of the events within the always block is arbitrary.

4.12

CD4-9780123747501.indd 1CD4-9780123747501.indd 1 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-2 4.12 An Introduction to Digital Design Using a Hardware Design Language

module CPU (clock);

 // Instruction opcodes
 parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b00000_100000, ALUop = 6’b0;

 input clock;

 reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories

 IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers

 EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers

 wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; // Access register fi elds

 wire [5:0] EXMEMop, MEMWBop, IDEXop; // Access opcodes

wire [31:0] Ain, Bin; // the ALU inputs

// These assignments defi ne fi elds from the pipeline registers
 assign IDEXrs = IDEXIR[25:21]; // rs fi eld
 assign IDEXrt = IDEXIR[20:16]; // rt fi eld
 assign EXMEMrd = EXMEMIR[15:11]; // rd fi eld
 assign MEMWBrd = MEMWBIR[15:11]; //rd fi eld
 assign MEMWBrt = MEMWBIR[20:16]; //rt fi eld--used for loads
 assign EXMEMop = EXMEMIR[31:26]; // the opcode
 assign MEMWBop = MEMWBIR[31:26]; // the opcode
 assign IDEXop = IDEXIR[31:26]; // the opcode

 // Inputs to the ALU come directly from the ID/EX pipeline registers
 assign Ain = IDEXA;
 assign Bin = IDEXB;

 reg [5:0] i; //used to initialize registers

 initial begin

 PC = 0;

 IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers

 for (i=0;i<=31;i=i+1) Regs[i] = i; //initialize registers--just so they aren’t cares

 end

 always @ (posedge clock) begin

 // Remember that ALL these actions happen every pipe stage and with the use of <= they happen in parallel!

 // fi rst instruction in the pipeline is being fetched

 IFIDIR <= IMemory[PC>>2];
 PC <= PC + 4;
 end // Fetch & increment PC

 // second instruction in pipeline is fetching registers

 IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

 IDEXIR <= IFIDIR; //pass along IR--can happen anywhere, since this affects next stage only!

 // third instruction is doing address calculation or ALU operation

 if ((IDEXop==LW) |(IDEXop==SW)) // address calculation

 EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]};

 else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions

 32: EXMEMALUOut <= Ain + Bin; //add operation

 default: ; //other R-type operations: subtract, SLT, etc.

 endcase

FIGURE 4.12.1 A Verilog behavorial model for the MIPS fi ve-stage pipeline, ignoring branch and data hazards. As in the design
earlier in Chapter 4, we use separate instruction and data memories, which would be implemented using separate caches as we describe in Chapter 5.
(continues on next page)

CD4-9780123747501.indd 2CD4-9780123747501.indd 2 27/07/11 7:08 PM27/07/11 7:08 PM

Implementing Forwarding in Verilog
To further extend the Verilog model, Figure 4.12.2 shows the addition of forward-
ing logic for the case when the source instruction is an ALU instruction and the
source. Neither load stalls nor branches are handled; we will add these shortly. The
changes from the earlier Verilog description are highlighted.

Someone has proposed moving the write for a result from an ALU instruction
from the WB to the MEM stage, pointing out that this would reduce the maximum
length of forwards from an ALU instruction by one cycle. Which of the following
are accurate rea sons not to consider such a change?

1. It would not actually change the forwarding logic, so it has no advantage.

2. It is impossible to implement this change under any circum stance since the
write for the ALU result must stay in the same pipe stage as the write for a
load result.

3. Moving the write for ALU instructions would create the possibility of writes
occurring from two different instruc tions during the same clock cycle. Either
an extra write port would be required on the register fi le or a structural
hazard would be created.

4. The result of an ALU instruction is not available in time to do the write
during MEM.

Check
Yourself

 EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

 //Mem stage of pipeline

 if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result

 else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];

 else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store

 MEMWBIR <= EXMEMIR; //pass along IR

 // the WB stage

 if ((MEMWBop==ALUop) & (MEMWBrd != 0)) // update registers if ALU operation and destination not 0
 Regs[MEMWBrd] <= MEMWBValue; // ALU operation

 else if ((EXMEMop == LW)& (MEMWBrt != 0)) // Update registers if load and destination not 0
 Regs[MEMWBrt] <= MEMWBValue;

 end
endmodule

FIGURE 4.12.1 A Verilog behavorial model for the MIPS fi ve-stage pipeline, ignoring branch and data hazards. (continued)

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-3

CD4-9780123747501.indd 3CD4-9780123747501.indd 3 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-4 4.12 An Introduction to Digital Design Using a Hardware Design Language

module CPU (clock);
parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b00000_100000, ALUop = 6’b0;
input clock;
 reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories
 IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers
 EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers
 wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; //hold register fi elds
 wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes
 wire [31:0] Ain, Bin;

// declare the bypass signals
 wire bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB,
 bypassAfromLWinWB, bypassBfromLWinWB;

 assign IDEXrs = IDEXIR[25:21]; assign IDEXrt = IDEXIR[15:11]; assign EXMEMrd = EXMEMIR[15:11];
 assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26];
 assign MEMWBrt = MEMWBIR[25:20];
 assign MEMWBop = MEMWBIR[31:26]; assign IDEXop = IDEXIR[31:26];

 // The bypass to input A from the MEM stage for an ALU operation
 assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass

 // The bypass to input B from the MEM stage for an ALU operation
 assign bypassBfromMEM = (IDEXrt == EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass

 // The bypass to input A from the WB stage for an ALU operation
 assign bypassAfromALUinWB =(IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop);

 // The bypass to input B from the WB stage for an ALU operation
 assign bypassBfromALUinWB = (IDEXrt == MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /

 // The bypass to input A from the WB stage for an LW operation
 assign bypassAfromLWinWB =(IDEXrs == MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW);

 // The bypass to input B from the WB stage for an LW operation
 assign bypassBfromLWinWB = (IDEXrt == MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW);

 // The A input to the ALU is bypassed from MEM if there is a bypass there,
 // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
 assign Ain = bypassAfromMEM? EXMEMALUOut :
 (bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;

 // The B input to the ALU is bypassed from MEM if there is a bypass there,
 // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
 assign Bin = bypassBfromMEM? EXMEMALUOut :
 (bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;

 reg [5:0] i; //used to initialize registers

 initial begin
 PC = 0;
 IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers
 for (i = 0;i<=31;i = i+1) Regs[i] = i; //initialize registers--just so they aren’t cares
 end

 always @ (posedge clock) begin

 // fi rst instruction in the pipeline is being fetched

 IFIDIR <= IMemory[PC>>2];
 PC <= PC + 4;
 end // Fetch & increment PC

FIGURE 4.12.2 A behavioral defi nition of the fi ve-stage MIPS pipeline with bypassing to ALU operations and address
calculations. The code added to Figure 4.12.1 to handle bypassing is highlighted. Because these bypasses only require changing where the ALU inputs
come from, the only changes required are in the combinational logic responsible for selecting the ALU inputs. (continues on next page)

CD4-9780123747501.indd 4CD4-9780123747501.indd 4 27/07/11 7:08 PM27/07/11 7:08 PM

The Behavioral Verilog with Stall Detection

If we ignore branches, stalls for data hazards in the MIPS pipe line are confi ned
to one simple case: loads whose results are cur rently in the WB clock stage. Thus,
extending the Verilog to handle a load with a destination that is either an ALU
instruction or an effective address calculation is reasonably straightfor ward, and
Figure 4.12.3 shows the few additions needed.

Someone has asked about the possibility of data hazards occur ring through
memory, as opposed to through a register. Which of the following statements about
such hazards are true?

1. Since memory accesses only occur in the MEM stage, all memory operations
are done in the same order as instruc tion execution, making such hazards
impossible in this pipe line.

2. Such hazards are possible in this pipeline; we just have not discussed
them yet.

3. No pipeline can ever have a hazard involving memory, since it is the
programmer’s job to keep the order of memory references accurate.

Check
Yourself

 // second instruction is in register fetch

 IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

 IDEXIR <= IFIDIR; //pass along IR--can happen anywhere, since this affects next stage only!

 // third instruction is doing address calculation or ALU operation

 if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B

EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]};

else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions
 32: EXMEMALUOut <= Ain + Bin; //add operation
 default: ; //other R-type operations: subtract, SLT, etc.
 endcase

 EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

 //Mem stage of pipeline
 if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result
 else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];
 else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store

 MEMWBIR <= EXMEMIR; //pass along IR

 // the WB stage

 if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

 else if ((EXMEMop == LW)& (MEMWBrt != 0)) Regs[MEMWBrt] <= MEMWBValue;

 end
endmodule

FIGURE 4.12.2 A behavioral defi nition of the fi ve-stage MIPS pipeline with bypassing to ALU operations and address
calculations. (continued)

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-5

CD4-9780123747501.indd 5CD4-9780123747501.indd 5 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-6 4.12 An Introduction to Digital Design Using a Hardware Design Language

module CPU (clock);
parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b00000_100000, ALUop = 6’b0;
input clock;
 reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories
 IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers
 EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers
 wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; //hold register fi elds
 wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes
 wire [31:0] Ain, Bin;

// declare the bypass signals
 wire stall, bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB,
 bypassAfromLWinWB, bypassBfromLWinWB;

 assign IDEXrs = IDEXIR[25:21]; assign IDEXrt = IDEXIR[15:11]; assign EXMEMrd = EXMEMIR[15:11];
 assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26];
 assign MEMWBrt = MEMWBIR[25:20];
 assign MEMWBop = MEMWBIR[31:26]; assign IDEXop = IDEXIR[31:26];
 // The bypass to input A from the MEM stage for an ALU operation
 assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass
 // The bypass to input B from the MEM stage for an ALU operation
 assign bypassBfromMEM = (IDEXrt== EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass
 // The bypass to input A from the WB stage for an ALU operation
 assign bypassAfromALUinWB =(IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop);
 // The bypass to input B from the WB stage for an ALU operation
 assign bypassBfromALUinWB = (IDEXrt==MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /
 // The bypass to input A from the WB stage for an LW operation
 assign bypassAfromLWinWB =(IDEXrs ==MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW);
 // The bypass to input B from the WB stage for an LW operation
 assign bypassBfromLWinWB = (IDEXrt==MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW);
 // The A input to the ALU is bypassed from MEM if there is a bypass there,
 // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
 assign Ain = bypassAfromMEM? EXMEMALUOut :
 (bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;
 // The B input to the ALU is bypassed from MEM if there is a bypass there,
 // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
 assign Bin = bypassBfromMEM? EXMEMALUOut :
 (bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;

 // The signal for detecting a stall based on the use of a result from LW
 assign stall = (MEMWBIR[31:26]==LW) && // source instruction is a load
 ((((IDEXop==LW)|(IDEXop==SW)) && (IDEXrs==MEMWBrd)) | // stall for address calc
 ((IDEXop==ALUop) && ((IDEXrs==MEMWBrd)|(IDEXrt==MEMWBrd)))); // ALU use

 reg [5:0] i; //used to initialize registers

 initial begin
 PC = 0;
 IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers
 for (i = 0;i<=31;i = i+1) Regs[i] = i; //initialize registers--just so they aren’t cares
 end

 always @ (posedge clock) begin

 if (~stall) begin // the fi rst three pipeline stages stall if there is a load hazard

FIGURE 4.12.3 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU
instruction or effective address calculation. The changes from Figure 4.12.2 are highlighted. (continues on next page)

CD4-9780123747501.indd 6CD4-9780123747501.indd 6 27/07/11 7:08 PM27/07/11 7:08 PM

4. Memory hazards may be possible in some pipelines, but they cannot occur
in this particular pipeline.

5. Although the pipeline control would be obligated to maintain ordering
among memory references to avoid hazards, it is impossible to design a
pipeline where the references could be out of order.

Implementing the Branch Hazard Logic in Verilog
We can extend our Verilog behavioral model to implement the control for branches.
We add the code to model branch equal using a “predict not taken” strategy. The
Verilog code is shown in Fig ure 4.12.4. It implements the branch hazard by detect-
ing a taken branch in ID and using that signal to squash the instruction in IF (by
setting the IR to 0, which is an effective no-op in MIPS-32); in addition, the PC is
assigned to the branch target. Note that to prevent an unexpected latch, it is impor-
tant that the PC is clearly assigned on every path through the always block; hence,
we assign the PC in a single if statement. Lastly, note that although Figure 4.12.4
incorporates the basic logic for branches and control hazards, the incorporation of
branches requires addi tional bypassing and data hazard detection, which we have
not included.

 // fi rst instruction in the pipeline is being fetched
 IFIDIR <= IMemory[PC>>2];
 PC <= PC + 4;

 IDEXIR <= IFIDIR; //pass along IR--can happen anywhere, since this affects next stage only!

 // second instruction is in register fetch
 IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

 // third instruction is doing address calculation or ALU operation
 if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B
 EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]};
 else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions
 32: EXMEMALUOut <= Ain + Bin; //add operation
 default: ; //other R-type operations: subtract, SLT, etc.
 endcase
 EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register
 end

 else EXMEMIR <= no-op; /Freeze fi rst three stages of pipeline; inject a nop into the EX output

 //Mem stage of pipeline
 if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result
 else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];
 else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store

 MEMWBIR <= EXMEMIR; //pass along IR

 // the WB stage

 if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

 else if ((EXMEMop == LW)& (MEMWBrt != 0)) Regs[MEMWBrt] <= MEMWBValue;

 end
endmodule

FIGURE 4.12.3 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU
instruction or effective address calculation. (continued)

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-7

CD4-9780123747501.indd 7CD4-9780123747501.indd 7 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-8 4.12 An Introduction to Digital Design Using a Hardware Design Language

module CPU (clock);
parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b0000000_0000000_0000000_0000000, ALUop = 6’b0;
input clock;
 reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories
 IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers
 EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers
 wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd; //hold register fi elds
 wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes
 wire [31:0] Ain, Bin;
 // declare the bypass signals
 wire takebranch, stall, bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB,
 bypassAfromLWinWB, bypassBfromLWinWB;
 assign IDEXrs = IDEXIR[25:21]; assign IDEXrt = IDEXIR[15:11]; assign EXMEMrd = EXMEMIR[15:11];
 assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26];
 assign MEMWBop = MEMWBIR[31:26]; assign IDEXop = IDEXIR[31:26];
 // The bypass to input A from the MEM stage for an ALU operation
 assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass
 // The bypass to input B from the MEM stage for an ALU operation
 assign bypassBfromMEM = (IDEXrt == EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass
 // The bypass to input A from the WB stage for an ALU operation
 assign bypassAfromALUinWB =(IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop);
 // The bypass to input B from the WB stage for an ALU operation
 assign bypassBfromALUinWB = (IDEXrt == MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /
 // The bypass to input A from the WB stage for an LW operation
 assign bypassAfromLWinWB =(IDEXrs == MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW);
 // The bypass to input B from the WB stage for an LW operation
 assign bypassBfromLWinWB = (IDEXrt == MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW);
 // The A input to the ALU is bypassed from MEM if there is a bypass there,
 // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
 assign Ain = bypassAfromMEM? EXMEMALUOut :
 (bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;
 // The B input to the ALU is bypassed from MEM if there is a bypass there,
 // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
 assign Bin = bypassBfromMEM? EXMEMALUOut :
 (bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;
 // The signal for detecting a stall based on the use of a result from LW
 assign stall = (MEMWBIR[31:26]==LW) && // source instruction is a load
 ((((IDEXop==LW)|(IDEXop==SW)) && (IDEXrs==MEMWBrd)) | // stall for address calc
((IDEXop==ALUop) && ((IDEXrs==MEMWBrd)|(IDEXrt==MEMWBrd)))); // ALU use

FIGURE 4.12.4 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU
instruction or effective address calculation. The changes from Figure 4.12.2 are highlighted. (continues on next page)

CD4-9780123747501.indd 8CD4-9780123747501.indd 8 27/07/11 7:08 PM27/07/11 7:08 PM

// Signal for a taken branch: instruction is BEQ and registers are equal

assign takebranch = (IFIDIR[31:26]==BEQ) && (Regs[IFIDIR[25:21]]== Regs[IFIDIR[20:16]]);

 reg [5:0] i; //used to initialize registers
 initial begin
 PC = 0;
 IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers
 for (i = 0;i<=31;i = i+1) Regs[i] = i; //initialize registers--just so they aren’t don’t cares
 end

 always @ (posedge clock) begin
 if (~stall) begin // the fi rst three pipeline stages stall if there is a load hazard
 if (~takebranch) begin // fi rst instruction in the pipeline is being fetched normally
 IFIDIR <= IMemory[PC>>2];
 PC <= PC + 4;

 end else begin // a taken branch is in ID; instruction in IF is wrong; insert a no-op and reset the PC
 IFDIR <= no-op;
 PC <= PC + 4 + ({{16{IFIDIR[15]}}, IFIDIR[15:0]}<<2);
 end

 // second instruction is in register fetch
 IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

 // third instruction is doing address calculation or ALU operation
 IDEXIR <= IFIDIR; //pass along IR
if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B
 EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]};
 else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions
 32: EXMEMALUOut <= Ain + Bin; //add operation
 default: ; //other R-type operations: subtract, SLT, etc.
 endcase
 EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register
 end
 else EXMEMIR <= no-op; /Freeze fi rst three stages of pipeline; inject a nop into the EX output

 //Mem stage of pipeline
 if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result
 else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];
 else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store

 // the WB stage
MEMWBIR <= EXMEMIR; //pass along IR
 if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

 else if ((EXMEMop == LW)& (MEMWBIR[20:16] != 0)) Regs[MEMWBIR[20:16]] <= MEMWBValue;

 end
endmodule

FIGURE 4.12.4 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU
instruction or effective address calculation. (continued)

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-9

CD4-9780123747501.indd 9CD4-9780123747501.indd 9 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-10 4.12 An Introduction to Digital Design Using a Hardware Design Language

Using Verilog for Behavioral Specifi cation with Synthesis

To demonstate the contrasting types of Verilog, we show two descriptions of a dif-
ferent, nonpipelined implementation style of MIPS that uses multiple clock cycles
per instruction. (Since some instructors make a synthesizeable description of the
MIPS pipe line project for a class, we chose not to include it here. It would also be
long.)

Figure 4.12.5 gives a behavioral specifi cation of a multicycle implementation
of the MIPS processor. Because of the use of behavioral operations, it would be
diffi cult to synthesize a sepa rate datapath and control unit with any reasonable
effi ciency. This version demonstrates another approach to the control by using a
Mealy fi nite-state machine (see discussion in Section C.10 of Appendix C). The
use of a Mealy machine, which allows the output to depend both on inputs and the
current state, allows us to decrease the total number of states.

Since a version of the MIPS design intended for synthesis is considerably
more complex, we have relied on a number of Ver ilog modules that were specifi ed
in Appendix C, including the following:

 ■ The 4-to-1 multiplexor shown in Figure C.4.2, and the 3-to-1 multiplexor
that can be trivially derived based on the 4-to-1 multiplexor.

 ■ The MIPS ALU shown in Figure C.5.15.

 ■ The MIPS ALU control defi ned in Figure C.5.16.

 ■ The MIPS register fi le defi ned in Figure C.8.11.

Now, let’s look at a Verilog version of the MIPS processor intended for synthesis.
Figure 4.12.6 shows the structural version of the MIPS datapath. Figure 4.12.7 uses
the datapath module to specify the MIPS CPU. This version also demonstrates
another approach to implementing the control unit, as well as some optimi zations
that rely on relationships between various control signals. Observe that the state
machine specifi cation only provides the sequencing actions.

The setting of the control lines is done with a series of assign statements that
depend on the state as well as the opcode fi eld of the instruction register. If one
were to fold the setting of the control into the state specifi cation, this would look
like a Mealy-style fi nite-state control unit. Because the setting of the control lines
is specifi ed using assign statements outside of the always block, most logic
synthesis systems will generate a small imple mentation of a fi nite-state machine
that determines the setting of the state register and then uses external logic to
derive the control inputs to the datapath.

In writing this version of the control, we have also taken advantage of a number
of insights about the relationship between various control signals as well as
situations where we don’t care about the control signal value; some examples of
these are given in the following elaboration.

CD4-9780123747501.indd 10CD4-9780123747501.indd 10 27/07/11 7:08 PM27/07/11 7:08 PM

module CPU (clock);

parameter LW = 6’b100011, SW = 6’b101011, BEQ=6’b000100, J=6’d2;

input clock; //the clock is an external input

// The architecturally visible registers and scratch registers for implementation
reg [31:0] PC, Regs[0:31], Memory [0:1023], IR, ALUOut, MDR, A, B;

reg [2:0] state; // processor state

wire [5:0] opcode; //use to get opcode easily

wire [31:0] SignExtend,PCOffset; //used to get sign-extended offset fi eld

assign opcode = IR[31:26]; //opcode is upper 6 bits

assign SignExtend = {{16{IR[15]}},IR[15:0]}; //sign extension of lower 16 bits of instruction

assign PCOffset = SignExtend << 2; //PC offset is shifted

// set the PC to 0 and start the control in state 0
initial begin PC = 0; state = 1; end

//The state machine--triggered on a rising clock
always @(posedge clock) begin

 Regs[0] = 0; //make R0 0 //shortcut way to make sure R0 is always 0

 case (state) //action depends on the state

 1: begin // fi rst step: fetch the instruction, increment PC, go to next state

 IR <= Memory[PC>>2];
 PC <= PC + 4;
 state = 2; //next state

 end

 2: begin // second step: Instruction decode, register fetch, also compute branch address

 A <= Regs[IR[25:21]];
 B <= Regs[IR[20:16]];
 state = 3;
 ALUOut <= PC + PCOffset; // compute PC-relative branch target

 end

 3: begin // third step: Load-store execution, ALU execution, Branch completion

 state = 4; // default next state
 if ((opcode==LW) |(opcode==SW)) ALUOut <= A + SignExtend; //compute effective address
 else if (opcode==6’b0) case (IR[5:0]) //case for the various R-type instructions
 32: ALUOut = A + B; //add operation
 default: ALUOut = A; //other R-type operations: subtract, SLT, etc.
 endcase

FIGURE 4.12.5 A behavioral specifi cation of the multicycle MIPS design. This has the same cycle behavior as the multicycle design, but
is purely for simulation and specifi cation. It cannot be used for synthesis. (con tinues on next page)

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-11

CD4-9780123747501.indd 11CD4-9780123747501.indd 11 27/07/11 7:08 PM27/07/11 7:08 PM

 else if (opcode == BEQ) begin
 if (A==B) PC <= ALUOut; // branch taken--update PC
 state = 1;
 end

 else if (opocde=J) begin
 PC = {PC[31:28], IR[25:0],2’b00}; // the jump target PC
 state = 1;
 end //Jumps

 else ; // other opcodes or exception for undefi ned instruction would go here
 end

 4: begin
 if (opcode==6’b0) begin //ALU Operation
 Regs[IR[15:11]] <= ALUOut; // write the result
 state = 1;
 end //R-type fi nishes

 else if (opcode == LW) begin // load instruction
 MDR <= Memory[ALUOut>>2]; // read the memory
 state = 5; // next state
 end

 else if (opcode == LW) begin
 Memory[ALUOut>>2] <= B; // write the memory
 state = 1; // return to state 1
 end //store fi nishes

 else ; // other instructions go here

 end

 5: begin // LW is the only instruction still in execution
 Regs[IR[20:16]] = MDR; // write the MDR to the register
 state = 1;
 end //complete an LW instruction
 endcase
end
endmodule

FIGURE 4.12.5 A behavioral specifi cation of the multicycle MIPS design. (continued)

4.12-12 4.12 An Introduction to Digital Design Using a Hardware Design Language

CD4-9780123747501.indd 12CD4-9780123747501.indd 12 27/07/11 7:08 PM27/07/11 7:08 PM

module Datapath (ALUOp, RegDst, MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite,
PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource, opcode, clock); // the control inputs + clock
input [1:0] ALUOp, ALUSrcB, PCSource; // 2-bit control signals
input RegDst, MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite, PCWrite, PCWriteCond,
ALUSrcA, clock; // 1-bit control signals
output [5:0] opcode ;// opcode is needed as an output by control
reg [31:0] PC, Memory [0:1023], MDR,IR, ALUOut; // CPU state + some temporaries
wire [31:0] A,B,SignExtendOffset, PCOffset, ALUResultOut, PCValue, JumpAddr, Writedata, ALUAin,
 ALUBin,MemOut; / these are signals derived from registers
wire [3:0] ALUCtl; //. the ALU control lines
wire Zero; the Zero out signal from the ALU
wire[4:0] Writereg;// the signal used to communicate the destination register
 initial PC = 0; //start the PC at 0

//Combinational signals used in the datapath

// Read using word address with either ALUOut or PC as the address source
assign MemOut = MemRead ? Memory[(IorD ? ALUOut : PC)>>2]:0;
assign opcode = IR[31:26];// opcode shortcut

// Get the write register address from one of two fi elds depending on RegDst
assign Writereg = RegDst ? IR[15:11]: IR[20:16];

// Get the write register data either from the ALUOut or from the MDR
assign Writedata = MemtoReg ? MDR : ALUOut;

// Sign-extend the lower half of the IR from load/store/branch offsets
assign SignExtendOffset = {{16{IR[15]}},IR[15:0]}; //sign-extend lower 16 bits;

// The branch offset is also shifted to make it a word offset
assign PCOffset = SignExtendOffset << 2;

// The A input to the ALU is either the rs register or the PC
assign ALUAin = ALUSrcA ? A : PC; //ALU input is PC or A

// Compose the Jump address
assign JumpAddr = {PC[31:28], IR[25:0],2’b00}; //The jump address

FIGURE 4.12.6 A Verilog version of the multicycle MIPS datapath that is appropriate for synthe sis. This datapath relies on several
units from Appendix C. Initial statements do not synthesize, and a version used for synthesis would have to incorporate a reset signal that had this
effect. Also note that resetting R0 to 0 on every clock is not the best way to ensure that R0 stays 0; instead, modifying the register fi le module to produce
0 whenever R0 is read and to ignore writes to R0 would be a more effi cient solution. (continues on next page)

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-13

CD4-9780123747501.indd 13CD4-9780123747501.indd 13 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-14 4.12 An Introduction to Digital Design Using a Hardware Design Language

// Creates an instance of the ALU control unit (see the module defi ned in Figure C.5.16 on page C-38

 // Input ALUOp is control-unit set and used to describe the instruction class as in Chapter 4
 // Input IR[5:0] is the function code fi eld for an ALU instruction
 // Output ALUCtl are the actual ALU control bits as in Chapter 4

ALUControl alucontroller (ALUOp,IR[5:0],ALUCtl); //ALU control unit

// Creates a 3-to-1 multiplexor used to select the source of the next PC

 // Inputs are ALUResultOut (the incremented PC) , ALUOut (the branch address), the jump target address
 // PCSource is the selector input and PCValue is the multiplexor output

Mult3to1 PCdatasrc (ALUResultOut,ALUOut,JumpAddr, PCSource , PCValue);

 // Creates a 4-to-1 multiplexor used to select the B input of the ALU

 // Inputs are register B,constant 4, sign-extended lower half of IR, sign-extended lower half of IR << 2
 // ALUSrcB is the selector input
 // ALUBin is the multiplexor output

Mult4to1 ALUBinput (B,32’d4,SignExtendOffset,PCOffset,ALUSrcB,ALUBin);

 // Creates a MIPS ALU

 // Inputs are ALUCtl (the ALU control), ALU value inputs (ALUAin, ALUBin)
 // Outputs are ALUResultOut (the 32-bit output) and Zero (zero detection output)

MIPSALU ALU (ALUCtl, ALUAin, ALUBin, ALUResultOut,Zero); //the ALU

// Creates a MIPS register fi le

 // Inputs are
 // the rs and rt fi elds of the IR used to specify which registers to read,
 // Writereg (the write register number), Writedata (the data to be written), RegWrite (indicates a

write), the clock
// Outputs are A and B, the registers read
registerfi le regs (IR[25:21],IR[20:16],Writereg,Writedata,RegWrite,A,B,clock); //Register fi le

// The clock-triggered actions of the datapath

always @(posedge clock) begin if (MemWrite) Memory[ALUOut>>2] <= B; // Write memory--must be a store

 ALUOut <= ALUResultOut; //Save the ALU result for use on a later clock cycle

 if (IRWrite) IR <= MemOut; // Write the IR if an instruction fetch

 MDR <= MemOut; // Always save the memory read value

 // The PC is written both conditionally (controlled by PCWrite) and unconditionally
 if (PCWrite || (PCWriteCond & Zero)) PC <=PCValue;

end
endmodule

FIGURE 4.12.6 A Verilog version of the multicycle MIPS datapath that is appropriate for synthe sis. (continued)

CD4-9780123747501.indd 14CD4-9780123747501.indd 14 27/07/11 7:08 PM27/07/11 7:08 PM

module CPU (clock);

 parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, J = 6’d2; //constants

 input clock; reg [2:0] state;

 wire [1:0] ALUOp, ALUSrcB, PCSource; wire [5:0] opcode;

 wire RegDst, MemRead, MemWrite, IorD, RegWrite, IRWrite, PCWrite, PCWriteCond,

 ALUSrcA, MemoryOp, IRWwrite, Mem2Reg;

// Create an instance of the MIPS datapath, the inputs are the control signals; opcode is only output

Datapath MIPSDP (ALUOp,RegDst,Mem2Reg, MemRead, MemWrite, IorD, RegWrite,
 IRWrite, PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource, opcode, clock);

 initial begin state = 1; end // start the state machine in state 1

// These are the defi nitions of the control signals

assign IRWrite = (state==1);

assign Mem2Reg = ~ RegDst;

assign MemoryOp = (opcode==LW)|(opcode==SW); // a memory operation

assign ALUOp = ((state==1)|(state==2)|((state==3)&MemoryOp)) ? 2’b00 : // add

 ((state==3)&(opcode==BEQ)) ? 2’b01 : 2’b10; // subtract or use function code

 assign RegDst = ((state==4)&(opcode==0)) ? 1 : 0;

 assign MemRead = (state==1) | ((state==4)&(opcode==LW));

 assign MemWrite = (state==4)&(opcode==SW);

 assign IorD = (state==1) ? 0 : (state==4) ? 1 : X;

 assign RegWrite = (state==5) | ((state==4) &(opcode==0));

 assign PCWrite = (state==1) | ((state==3)&(opcode==J));

 assign PCWriteCond = (state==3)&(opcode==BEQ);

 assign ALUSrcA = ((state==1)|(state==2)) ? 0 :1;

 assign ALUSrcB = ((state==1) | ((state==3)&(opcode==BEQ))) ? 2’b01 : (state==2) ? 2’b11 :

 ((state==3)&MemoryOp) ? 2’b10 : 2’b00; // memory operation or other

 assign PCSource = (state==1) ? 2’b00 : ((opcode==BEQ) ? 2’b01 : 2’b10);

// Here is the state machine, which only has to sequence states

 always @(posedge clock) begin // all state updates on a positive clock edge

 case (state)

 1: state = 2; //unconditional next state

 2: state = 3; //unconditional next state

 3: // third step: jumps and branches complete

 state = ((opcode==BEQ) | (opcode==J)) ? 1 : 4;// branch or jump go back else next state

 4: state = (opcode==LW) ? 5 : 1; //R-type and SW fi nish

 5: state = 1; // go back

 endcase
end

 endmodule

FIGURE 4.12.7 The MIPS CPU using the datapath from Figure 4.12.6.

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-15

CD4-9780123747501.indd 15CD4-9780123747501.indd 15 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-16 4.12 An Introduction to Digital Design Using a Hardware Design Language

Elaboration: When specifying control, designers often take advantage of knowledge
of the control so as to simplify or shorten the control specifi ca tion. Here are a few exam-
ples from the specifi cation in Figures 4.12.6 and 4.12.7.

1. MemtoReg is set only in two cases, and then it is always the inverse of RegDst, so
we just use the inverse of RegDst.

2. IRWrite is set only in state 1.

3. The ALU does not operate in every state and, when unused, can safely do any-
thing.

4. RegDst is 1 in only one case and can otherwise be set to 0. In practice it might be
better to set it explicitly when needed and otherwise set it to X, as we do for IorD.
First, it allows additional logic optimization possibilities through the exploitation of
don’t-care terms (see Ap pendix C for further discussion and examples). Second,
it is a more pre cise specifi cation, and this allows the simulation to more closely
model the hardware, possibly uncovering additional errors in the specifi ca tion.

More Illustrations of Instruction Execution on the
Hardware

To reduce the cost of this book, in the third edition we moved sections and fi gures
that were used by a minority of instructors onto a companion CD. This subsection
recaptures those fi gures for readers who would like more supplemental material to
better understand pipelining. These are all single-clock-cycle pipeline diagrams,
which take many fi gures to illustrate the execution of a sequence of instructions.

The three examples are for code with no hazards, an example of forwarding
on the pipelined implementation, and an example of bypassing on the pipelined
implementation.

No Hazard Illustrations
On page 356, we gave the example code sequence

lw $10, 20($1)
sub $11, $2, $3

Figures 4.43 and 4.44 showed the multiple-clock-cycle pipeline diagrams for this
two-instruction sequence exe cuting across six clock cycles. Figures 4.12.8 through
4.12.10 show the corresponding single-clock-cycle pipeline diagrams for these
two instructions. Note that the order of the instructions differs between these two
types of diagrams: the newest instruction is at the bottom and to the right of the
multiple-clock-cycle pipeline diagram, and it is on the left in the single-clock-cycle
pipeline diagram.

CD4-9780123747501.indd 16CD4-9780123747501.indd 16 27/07/11 7:08 PM27/07/11 7:08 PM

FIGURE 4.12.8 Single-cycle pipeline diagrams for clock cycles 1 (top diagram) and 2 (bottom diagram). This style of pipeline
representation is a snap shot of every instruction executing during one clock cycle. Our example has but two instructions, so at most two stages are
identifi ed in each clock cycle; normally, all fi ve stages are occupied. The highlighted portions of the datapath are active in that clock cycle. The load is
fetched in clock cycle 1 and decoded in clock cycle 2, with the subtract fetched in the second clock cycle. To make the fi gures easier to understand, the
other pipeline stages are empty, but normally there is an instruction in every pipeline stage.

Instruction
memory

Address

4

32

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

Add

Add

PC

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16 Sign-
extend

Write
register

Write
data

ID/EX

Instruction decode

lw $10,20($1)

Instruction fetch

sub $11,$2,$3

Instruction
memory

Address

4

32

Add Add
result

Shift
left 2

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

PC

Write
data

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16

Write
register

Write
data

Read
data

ALU
result

ALU
Zero

Add
Add

result

ALU
result

ALU
Zero

ID/EX

Instruction fetch

lw $10,20($1)

Address

Data
memory

Write
data

Read
data

Address

Data
memory

Clock 1

Clock 2

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

1

0

M
u
x

0

1

Sign-
extend

MEM/WB

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-17

CD4-9780123747501.indd 17CD4-9780123747501.indd 17 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-18 4.12 An Introduction to Digital Design Using a Hardware Design Language

FIGURE 4.12.9 Single-cycle pipeline diagrams for clock cycles 3 (top diagram) and 4 (bottom diagram). In the third clock cycle
in the top diagram, lw enters the EX stage. At the same time, sub enters ID. In the fourth clock cycle (bottom datapath), lw moves into MEM stage,
reading memory using the address found in EX/MEM at the beginning of clock cycle 4. At the same time, the ALU subtracts and then places the
difference into EX/MEM at the end of the clock cycle.

Instruction
memory

Address

4

32

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

Add

Add

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16

Sign-
extend

Sign-
extend

Write
register

Write
data

ID/EX

Memory

lw $10,20($1)

Execution

sub $11,$2,$3

Instruction
memory

Address

4

32

Add Add
result

Shift
left 2

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

PC

PC

Write
data

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16

Write
register

Write
data

Read
data

ALU
result

ALU
Zero

ALU
result

ALU
Zero

ID/EX

Address

Data
memory

Write
data

Read
data

Address

Data
memory

Clock 3

Clock 4

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

1

0

M
u
x

0

1

Instruction decode

sub $11,$2,$3

Execution

lw $10,20($1)

CD4-9780123747501.indd 18CD4-9780123747501.indd 18 27/07/11 7:08 PM27/07/11 7:08 PM

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-19

FIGURE 4.12.10 Single-cycle pipeline diagrams for clock cycles 5 (top diagram) and 6 (bottom diagram). In clock cycle 5, lw
completes by writing the data in MEM/WB into register 10, and sub sends the difference in EX/MEM to MEM/WB. In the next clock cycle, sub writes the
value in MEM/WB to register 11.

PC Instruction
memory

Registers

Control

M
u
x

M
u
x

M
u
x

Data
memory

M
u

ALU

x

In
st

ru
ct

io
n

IF
/ID

W
rit

e

ID/EX.MemRead
P

C
W

rit
e

ID/EX

EX/MEM

MEM/WB

1

1
X

X

1
X
2

ID/EX.RegisterRt

$X

$1

0

11

EX

WB

WBM

Forwarding
unit

Hazard
detection

unit

M
u
x

IF/ID

More Examples
To understand how pipeline control works, let’s consider these fi ve instructions

going through the pipeline:

lw $10, 20($1)
sub $11, $2, $3
and $12, $4, $5
or $13, $6, $7
add $14, $8, $9

Figures 4.12.11 through 4.12.15 show these instructions pro ceeding through the
nine clock cycles it takes them to complete exe cution, highlighting what is active in a

CD4-9780123747501.indd 19CD4-9780123747501.indd 19 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-20 4.12 An Introduction to Digital Design Using a Hardware Design Language

FIGURE 4.12.11 Clock cycles 1 and 2. The phrase “before<i>” means the i th instruction before lw. The lw instruction in the top datapath is
in the IF stage. At the end of the clock cycle, the lw instruction is in the IF/ID pipeline registers. In the second clock cycle, seen in the bottom datapath,
the lw moves to the ID stage, and sub enters in the IF stage. Note that the values of the instruction fi elds and the selected source registers are shown in
the ID stage. Hence register $1 and the constant 20, the operands of lw, are written into the ID/EX pipeline register. The number 10, representing the
destination reg ister number of lw, is also placed in ID/EX. Bits 15–11 are 0, but we use X to show that a fi eld plays no role in a given instruction. The
top of the ID/EX pipeline register shows the control values for lw to be used in the remaining stages. These control values can be read from the lw row
of the table in Figure 4.18.

Instruction
[20–16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

Instruction
[15–0] ALU

control

R
eg

W
rit

e

MemRead

Control

Instruction
[15–11]

EX

M

WB

M

WB

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID:
before<1>

EX:
before<2>

MEM:
before<3>

WB:
before<4>

MEM/WB

IF: lw $10,20($1)

000

00

0000

000

00

00
0

0

00

0
0

0

0
0

1

PC

WB

EX

M

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

ALU
control

R
eg

W
rit

e

M

WB

WB

In
st

ru
ct

io
n

IF/ID

ID:
lw $10,20($1)

EX:
before<1>

MEM:
before<2>

WB:
before<3>

MEM/WB

IF:
sub $11,$2,$3

010

11

0001

000

00

00
0

0

00

0
0

0

0
0

PC

lw
Control

X

1

Instruction
[20–16]

Instruction
[15–0]

Instruction
[15–11]

20

$X

$1

10

X

M
em

W
rit

e

MemRead

M
em

W
rit

e

Clock 2

Clock 1

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x
0

Add

Add

Instruction
memory

Address

Instruction
memory

Address

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Write
data

Write
data

Write
data

Read
data

ALU
result

ALU
Zero

Address

Data
memory

Write
data

Read
data

Address

Data
memory

Sign-
extend

Sign-
extend

X

10

20

EX/MEMID/EX

ALU
result

ALU
Zero

Shift
left 2

Add Add
result

Shift
left 2

Add Add
result

CD4-9780123747501.indd 20CD4-9780123747501.indd 20 27/07/11 7:08 PM27/07/11 7:08 PM

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-21

Instruction
[20–16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

Instruction
[15–0]

Shift
left 2R

eg
W

rit
e

MemRead

Control

Instruction
[15–11]

EX

M

WB

M

WB

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID:
sub $11,$2,$3

EX:
lw $10,...

MEM:
before<1>

WB:
before<2>

MEM/WB

IF:
and $12,$4,$5

000

10

1100

010

11

00
0

1

00

0
0

0

0
0

1

PC

WB

EX

M

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

ALU
control

ALU
control

Shift
left 2R

eg
W

rit
e

WB

WB

In
st

ru
ct

io
n

IF/ID

ID: and $12,$4,$5 EX: sub $11,... MEM: lw $10,... WB: before<1>

MEM/WB

IF: or $13,$6,$7

000

10

1100

000

10

10
1

0

11

1
0

0

0
0

PC

and
Control

5

4

Instruction
[20–16]

Instruction
[15–0]

Instruction
[15–11]

X

$5

$4

$3

$2

X

20

10

12
10

11

M
em

W
rit

e

MemRead

M
em

W
rit

e

Clock 4

Clock 3

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x
0

Add

Add

Instruction
memory

Address

Instruction
memory

Address

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Add Add
result

Write
data

Read
data

ALU
result

ALU
Zero

Add Add
result

Address

Data
memory

Write
data

Read
data

Address

Data
memory

Sign-
extend

Sign-
extend

12

X

X

EX/MEMID/EX

ALU
result

ALU
Zero

2

3
$2 $1

$3

X

X

11

X

X

11

M

FIGURE 4.12.12 Clock cycles 3 and 4. In the top diagram, lw enters the EX stage in the third clock cycle, adding $1 and 20 to form the address
in the EX/MEM pipeline register. (The lw instruction is written lw $10,... upon reaching EX, because the identity of instruction operands is
not needed by EX or the subse quent stages. In this version of the pipeline, the actions of EX, MEM, and WB depend only on the instruction and its
destination register or its target address.) At the same time, sub enters ID, reading registers $2 and $3, and the and instruction starts IF. In the fourth
clock cycle (bottom datapath), lw moves into MEM stage, reading memory using the value in EX/MEM as the address. In the same clock cycle, the ALU
subtracts $3 from $2 and places the difference into EX/MEM registers $4 and $5 are read during ID and the or instruc tion enters IF. The two diagrams
show the control signals being created in the ID stage and peeled off as they are used in subsequent pipe stages.

CD4-9780123747501.indd 21CD4-9780123747501.indd 21 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-22 4.12 An Introduction to Digital Design Using a Hardware Design Language

Instruction
[20–16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

Instruction
[15–0]

Shift
left 2R

eg
W

rit
e

MemRead

Control

Instruction
[15–11]

EX

M

WB

M

WB

WB

In
st

ru
ct

io
n

IF/ID

or

EX/MEMID/EX

ID:
or $13,$6,$7

EX:
and $12,...

MEM:
sub $11,...

WB:
lw $10,..

MEM/WB

IF:
add $14,$8,$9

000

10

1100

000

10

10
1

0

10

0
0

0

1
1

1

PC

WB

EX

M

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

ALU
control

ALU
control

Shift
left 2R

eg
W

rit
e

M

WB

WB

In
st

ru
ct

io
n

IF/ID

ID:
add $14,$8,$9

EX:
or $13,...

MEM:
and $12,...

WB:
sub $11,.

MEM/WB

IF:
after<1>

000

10

1100

000

10

10
1

0

10

0
0

0

1
0

PC

add
Control

9

11

8

Instruction
[20–16]

Instruction
[15–0]

Instruction
[15–11]

X

$9

$8

$7

$6

X

11 10

14
12 11

13

M
em

W
rit

e

MemRead

M
em

W
rit

e

Clock 6

Clock 5

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x
0

Add

Add

Instruction
memory

Address

Instruction
memory

Address

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Add Add
result

Write
data

Read
data

ALU
result

ALU
Zero

Add Add
result

Address

Data
memory

Write
data

Read
data

Address

Data
memory

Sign-
extend

Sign-
extend

12

X

X

EX/MEMID/EX

ALU
result

ALU
Zero

6

7

10

$6 $4

$5$7

X

X

13

X

X

13 12

FIGURE 4.12.13 Clock cycles 5 and 6. With add, the fi nal instruction in this example, entering IF in the top datapath, all instructions are
engaged. By writing the data in MEM/WB into register 10, lw com pletes; both the data and the register number are in MEM/WB. In the same clock
cycle, sub sends the differ ence in EX/MEM to MEM/WB, and the rest of the instructions move forward. In the next clock cycle, sub selects the value in
MEM/WB to write to register number 11, again found in MEM/WB. The remaining instructions play follow-the-leader: the ALU calculates the OR of
$6 and $7 for the or instruction in the EX stage, and registers $8 and $9 are read in the ID stage for the add instruction. The instructions after add are
shown as inactive just to emphasize what occurs for the fi ve instructions in the example. The phrase “after<i>” means the i th instruction after add.

CD4-9780123747501.indd 22CD4-9780123747501.indd 22 27/07/11 7:08 PM27/07/11 7:08 PM

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-23

Instruction
[20–16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

Instruction
[15–0] ALU

control

Shift
left 2R

eg
W

rit
e

MemRead

Control

Instruction
[15–11]

EX

M

WB

M

WB

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID:
after<1>

EX:
add $14,...

MEM:
or $13,...

WB:
and $12,.

MEM/WB

IF:
after<2>

000

00

0000

000

10

10
1

0

10

0
0

0

1
0

1

PC

WB

EX

M

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

ALU
control

Shift
left 2R

eg
W

rit
e

M

WB

WB

In
st

ru
ct

io
n

IF/ID

ID:
after<2>

EX:
after<1>

MEM:
add $14,...

WB:
or $13,..

MEM/WB

IF:
after<3>

000

00

0000

000

00

00
0

0

10

0
0

0

1
0

PC

Control

13

Instruction
[20–16]

Instruction
[15–0]

Instruction
[15–11]

14 13

M
em

W
rit

e

MemRead

M
em

W
rit

e

Clock 8

Clock 7

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x
0

Add

Add

Instruction
memory

Address

Instruction
memory

Address

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Write
data

Add Add
result

Write
data

Read
data

ALU
result

ALU
Zero

Add Add
result

Address

Data
memory

Write
data

Read
data

Address

Data
memory

Sign-
extend

Sign-
extend

EX/MEMID/EX

ALU
result

ALU
Zero

12

$8

$9

14

13 12

Write
data

FIGURE 4.12.14 Clock cycles 7 and 8. In the top datapath, the add instruction brings up the rear, adding the values corresponding to registers
$8 and $9 during the EX stage. The result of the or instruction is passed from EX/MEM to MEM/WB in the MEM stage, and the WB stage writes the
result of the and instruction in MEM/WB to register $12. Note that the control signals are deasserted (set to 0) in the ID stage, since no instruction is
being executed. In the following clock cycle (lower drawing), the WB stage writes the result to register $13, thereby completing or, and the MEM stage
passes the sum from the add in EX/MEM to MEM/WB. The instructions after add are shown as inac tive for pedagogical reasons.

CD4-9780123747501.indd 23CD4-9780123747501.indd 23 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-24 4.12 An Introduction to Digital Design Using a Hardware Design Language

FIGURE 4.12.15 Clock cycle 9. The WB stage writes the sum in MEM/WB into reg ister $14, completing add and the fi ve-instruction sequence.
The instructions after add are shown as inactive for pedagogical reasons.

WB

EX

M

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

ALU
control

Shift
left 2R

eg
W

rit
e

M

WB

WB
In

st
ru

ct
io

n

IF/ID

ID:
after<3>

EX:
after<2>

MEM:
after<1>

WB:
add $14,.

MEM/WB

IF:
after<4>

000

00

0000

000

00

00
0

0

00

0
0

0

1
0

PC

Control

14

Instruction
[20–16]

Instruction
[15–0]

Instruction
[15–11]

14

MemRead

M
em

W
rit

e

Clock 9

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

0

1

Add

Instruction
memory

Address

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Write
data

Add Add
result

Write
data

Read
data

Address

Data
memory

Sign-
extend

EX/MEMID/EX

ALU
result

ALU
Zero

stage and identifying the instruction associated with each stage during a clock cycle. If
you examine them carefully, you may notice:

 ■ In Figure 4.12.13 you can see the sequence of the destination register numbers
from left to right at the bottom of the pipeline registers. The numbers advance to
the right during each clock cycle, with the MEM/WB pipeline register sup plying
the number of the register written during the WB stage.

 ■ When a stage is inactive, the values of control lines that are deasserted are shown
as 0 or X (for don’t care).

 ■ Sequencing of control is embedded in the pipeline structure itself. First, all
instructions take the same number of clock cycles, so there is no special control
for instruction dura tion. Second, all control information is computed during
instruction decode and then passed along by the pipeline registers.

CD4-9780123747501.indd 24CD4-9780123747501.indd 24 27/07/11 7:08 PM27/07/11 7:08 PM

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-25

Forwarding Illustrations
We can use the single-clock-cycle pipeline diagrams to show how forwarding

operates, as well as how the control activates the forwarding paths. Consider the
following code sequence in which the dependences have been highlighted:

sub $2, $1, $3
and $4, $2, $5
or $4, $4, $2
add $9, $4, $2

Figures 4.12.16 and 4.12.17 show the events in clock cycles 3–6 in the execution of
these instructions.

In clock cycle 4, the forwarding unit sees the writing by the sub instruction of
register $2 in the MEM stage, while the and instruction in the EX stage is reading
register $2. The forwarding unit selects the EX/MEM pipeline register instead of
the ID/EX pipeline register as the upper input to the ALU to get the proper value
for register $2. The following or instruction reads register $4, which is written by
the and instruction, and register $2, which is written by the sub instruction.

Thus, in clock cycle 5, the forwarding unit selects the EX/MEM pipeline register
for the upper input to the ALU and the MEM/WB pipeline register for the lower
input to the ALU. The following add instruction reads both register $4, the target
of the and instruc tion, and register $2, which the sub instruction has already writ-
ten. Notice that the prior two instructions both write register $4, so the forwarding
unit must pick the immediately preceding one (MEM stage).

In clock cycle 6, the forwarding unit thus selects the EX/MEM pipeline register,
containing the result of the or instruction, for the upper ALU input but uses the
nonforwarding register value for the lower input to the ALU.

Illustrating Pipelines with Stalls and Forwarding

We can use the single-clock-cycle pipeline diagrams to show how the control
for stalls works. Figures 4.12.18 through 4.12.20 show the single-cycle diagram for
clocks 2 through 7 for the following code sequence (dependences highlighted):

lw $2, 20($1)
and $4, $2,$5
or $4, $4,$2
add $9, $4,$2

CD4-9780123747501.indd 25CD4-9780123747501.indd 25 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-26 4.12 An Introduction to Digital Design Using a Hardware Design Language

FIGURE 4.12.16 Clock cycles 3 and 4 of the instruction sequence on page 4.12-25. The bold lines are those active in a clock cycle, and
the italicized register numbers in color indicate a hazard. The forwarding unit is highlighted by shading it when it is forwarding data to the ALU. The
instructions before sub are shown as inactive just to emphasize what occurs for the four instructions in the example. Operand names are used in EX for
control of forwarding; thus they are included in the instruction label for EX. Operand names are not needed in MEM or WB, so . . . is used. Compare
this with Figures 4.12.12 through 4.12.15, which show the datapath without forwarding where ID is the last stage to need operand information.

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

and $4,$2,$5 sub $2, $1, $3

ID/EX

before<1>

EX/MEM

before<2>

MEM/WB

or $4,$4,$2

Clock 3

2

5

10 10

$2

$5

5
2

4

$1

$3

3
1

2

Control

ALU

M

WB

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

or $4,$4,$2 and $4,$2,$5

ID/EX

sub $2,...

EX/MEM

before<1>

MEM/WB

add $9,$4,$2

Clock 4

4

2

10 10

10

$4

$2

2
4

4

$2

$5

5
2

2
4

Control

ALU

M

WB

WB

CD4-9780123747501.indd 26CD4-9780123747501.indd 26 27/07/11 7:08 PM27/07/11 7:08 PM

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-27

FIGURE 4.12.17 Clock cycles 5 and 6 of the instruction sequence on page 4.12-25. The forwarding unit is highlighted when it is
forwarding data to the ALU. The two instructions after add are shown as inactive just to emphasize what occurs for the four instructions in the example.
The bold lines are those active in a clock cycle, and the italicized register numbers in color indicate a hazard.

PC Instruction
memory

Registers

Control

M
u
x

Data
memory

M
u
x

M
u
x

M
u
x

ALUIn
st

ru
ct

io
n

IF/ID

add $9,$4,$2 or $4,$4,$2

ID/EX

and $4,...

EX/MEM

sub $2,..

MEM/WB

after<1>

Clock 5

4

2

2

4
2

4
2

9 4

$2

$4

$2

$4

10 10

10

1

4 2

after<1>after<2> add $9,$4,$2 or $4,...

EX/MEM

and $4,..

MEM/WB

ID/EX

EX

WB

M WB

WBM

Forwarding
unit

PC Instruction
memory

Registers

Control

M
u
x

M
u
x

M
u
x

Data
memory

M
u

ALU

x

In
st

ru
ct

io
n

IF/ID

Clock 6

4

4
2

9

$2

$4

10

10

1

4 4

EX

WB

M WB

WBM

Forwarding
unit

CD4-9780123747501.indd 27CD4-9780123747501.indd 27 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-28 4.12 An Introduction to Digital Design Using a Hardware Design Language

FIGURE 4.12.18 Clock cycles 2 and 3 of the instruction sequence on page 4.12-25 with a load replacing sub. The bold lines
are those active in a clock cycle, the italicized register numbers in color indicate a hazard, and the . . . in the place of operands means that their identity
is information not needed by that stage. The values of the signifi cant control lines, registers, and register numbers are labeled in the fi gures. The and
instruction wants to read the value created by the lw instruction in clock cycle 3, so the hazard detection unit stalls the and and or instructions. Hence,
the hazard detection unit is highlighted.

Registers

In
st

ru
ct

io
n

ID/EX

2

5

Control

PC Instruction
memory

PC Instruction
memory

Hazard
detection

unit

0

M
u
x

IF
/ID

W
rit

e

P
C

W
rit

e

IF
/ID

W
rit

e

P
C

W
rit

e

ID/EX.RegisterRt

before<3>

Registers

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

In
st

ru
ct

io
n

IF/ID

lw $2,20($1)

ID/EX

before<2>

EX/MEM

MEM/WB

Clock 2

1

1

X

X
11

$1

$X

X

2

1

Control

ALU

WB

lw $2,20($1) before<1> before<2>or $4,$4,$2 and $4,$2,$5

and $4,$2,$5

Clock 3

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

Forwarding
unit

EX/MEM

MEM/WB

00 11

$1

$X

X

12

$5

$2

2
5

5

4

2

ALU

WB

Hazard
detection

unit

0

M
u
x

ID/EX.RegisterRt

before<1>

ID/EX.MemRead

ID/EX.MemRead

M
u
x

IF/ID

CD4-9780123747501.indd 28CD4-9780123747501.indd 28 27/07/11 7:08 PM27/07/11 7:08 PM

 4.12 An Introduction to Digital Design Using a Hardware Design Language 4.12-29

FIGURE 4.12.19 Clock cycles 4 and 5 of the instruction sequence on page 4.12-25 with a load replacing sub. The bubble is
inserted in the pipeline in clock cycle 4, and then the and instruction is allowed to proceed in clock cycle 5. The forwarding unit is highlighted in clock
cycle 5 because it is for warding data from lw to the ALU. Note that in clock cycle 4, the forwarding unit forwards the address of the lw as if it were the
contents of register $2; this is rendered harmless by the insertion of the bubble. The bold lines are those active in a clock cycle, and the italicized register
numbers in color indicate a hazard.

Registers

In
st

ru
ct

io
n

ID/EX

4

2

2

Control

PC Instruction
memory

PC Instruction
memory

Hazard
detection

unit

0

M
u
x

IF
/ID

W
rit

e

P
C

W
rit

e

IF
/ID

W
rit

e

P
C

W
rit

e

ID/EX.RegisterRt

before<1>

Registers

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

In
st

ru
ct

io
n

IF/ID

and $4,$2,$5

ID/EX

lw $2,...

EX/MEM

MEM/WB

Clock 4

2

2

5

5
10 00

11

$2

$5

5

4

2

$2

$5

5

4

2

2

Control

ALU

WB

and $4,$2,$5 Bubble lw $2,...add $9,$4,$2 or $4,$4,$2

or $4,$4,$2

Clock 5

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

Forwarding
unit

EX/MEM

MEM/WB

10 10

11

2

0

$2

$5

5

4

4

$2

$4

2
5

2

4

2

ALU

WB

Hazard
detection

unit

0

M
u
x

ID/EX.RegisterRt

Bubble

ID/EX.MemRead

ID/EX.MemRead

M
u
x

IF/ID

CD4-9780123747501.indd 29CD4-9780123747501.indd 29 27/07/11 7:08 PM27/07/11 7:08 PM

4.12-30 4.12 An Introduction to Digital Design Using a Hardware Design Language

Registers

In
st

ru
ct

io
n

ID/EX

4

Control

PC Instruction
memory

PC Instruction
memory

Hazard
detection

unit

0

M
u
x

IF
/ID

W
rit

e

P
C

W
rit

e

IF
/ID

W
rit

e

P
C

W
rit

e

ID/EX.RegisterRt

Bubble

Registers

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

In
st

ru
ct

io
n

IF/ID

add $9,$4,$2

ID/EX

and $4,...

EX/MEM

MEM/WB

Clock 6

4

4

2

2
10 10

10

0

$4

$2

2

9

4

$4

$2

2

4

4

4

Control

ALU

WB

add $9,$4,$2 or $4,... and $4,...after<2> after<1>

after<1>

Clock 7

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

Forwarding
unit

EX/MEM

MEM/WB

10 10

1

44

10

$4

$2

2

9

4

ALU

WB

Hazard
detection

unit

0

M
u
x

ID/EX.RegisterRt

or $4,$4,$2

ID/EX.MemRead

ID/EX.MemRead

M
u
x

IF/ID

FIGURE 4.12.20 Clock cycles 6 and 7 of the instruction sequence on page 4.12-25 with a load replacing sub. Note that unlike
in Figure 4.12.17, the stall allows the lw to complete, and so there is no forwarding from MEM/WB in clock cycle 6. Register $4 for the add in the EX
stage still depends on the result from or in EX/MEM, so the forwarding unit passes the result to the ALU. The bold lines show ALU input lines active in
a clock cycle, and the italicized register numbers indicate a hazard. The instruc tions after add are shown as inactive for pedagogical reasons.

CD4-9780123747501.indd 30CD4-9780123747501.indd 30 27/07/11 7:08 PM27/07/11 7:08 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 212
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 212
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 424
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'ELS Web Pdf_01'] [Based on 'ELS Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'ELS_WOBL'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /DocumentRGB
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

