
    An Introduction to Digital Design Using a 
Hardware Design Language to Describe 
and Model a Pipeline and More Pipelining 
Illustrations

This CD section covers hardware decription langauges and then a dozen examples 
of pipeline diagrams, starting on page 4.12-16.

As mentioned in  Appendix C, Verilog can describe proces sors for simulation 
or with the intention that the Verilog specifi  cation be synthesized. To achieve 
acceptable synthesis results in size and speed, a behavioral specifi cation intended 
for synthesis must carefully delineate the highly combinational portions of the 
design, such as a datapath, from the control. The datapath can then be synthesized 
using available libraries. A Verilog specifi ca tion intended for synthesis is usually 
longer and more complex. 

We start with a behavioral model of the 5-stage pipeline. To illustrate the dichot-
omy between behavioral and synthesizeable designs, we then give two Verilog 
descriptions of a multiple-cycle-per-instruction MIPS processor: one intended 
solely for simulations and one suitable for synthesis. 

Using Verilog for Behavioral Specifi cation with 
Simulation for the 5-Stage Pipeline

Figure 4.12.1 shows a Verilog behavioral description of the pipeline that handles 
ALU instructions as well as loads and stores. It does not accommodate branches 
(even incorrectly!), which we postpone including until later in the chapter. 

Because Verilog lacks the ability to defi ne registers with named fi elds such as 
structures in C, we use several independent registers for each pipeline register. We 
name these registers with a prefi x using the same convention; hence, IFIDIR is the 
IR portion of the IFID pipeline register. 

This version is a behavioral description not intended for syn thesis. Instructions 
take the same number of clock cycles as our hardware design, but the control 
is done in a simpler fashion by repeatedly decoding fi elds of the instruction in 
each pipe stage. Because of this difference, the instruction register (IR) is needed 
throughout the pipeline, and the entire IR is passed from pipe stage to pipe stage. 
As you read the Verilog descriptions in this chapter, remember that the actions in 
the always block all occur in parallel on every clock cycle. Since there are no block-
ing assignments, the order of the events within the always block is arbitrary.

4.12
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4.12-2 4.12 An Introduction to Digital Design Using a Hardware Design Language

module CPU (clock);

  // Instruction opcodes
   parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b00000_100000, ALUop = 6’b0;

   input clock;

   reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories

            IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers

            EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers

   wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; // Access register fi elds

   wire [5:0] EXMEMop, MEMWBop, IDEXop; // Access opcodes

wire [31:0] Ain, Bin; // the ALU inputs

// These assignments defi ne fi elds from the pipeline registers
   assign IDEXrs = IDEXIR[25:21];   // rs fi eld
   assign IDEXrt = IDEXIR[20:16];   // rt fi eld
   assign EXMEMrd = EXMEMIR[15:11]; // rd fi eld
   assign MEMWBrd = MEMWBIR[15:11]; //rd fi eld
   assign MEMWBrt = MEMWBIR[20:16]; //rt fi eld--used for loads 
   assign EXMEMop = EXMEMIR[31:26]; // the opcode 
   assign MEMWBop = MEMWBIR[31:26]; // the opcode 
   assign IDEXop = IDEXIR[31:26];   // the opcode 

   // Inputs to the ALU come directly from the ID/EX pipeline registers
   assign Ain = IDEXA; 
   assign Bin = IDEXB;

   reg [5:0] i; //used to initialize registers 

   initial begin  

       PC = 0; 

      IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers

       for (i=0;i<=31;i=i+1) Regs[i] = i; //initialize registers--just so they aren’t cares

   end

   always @ (posedge clock) begin 

   // Remember that ALL these actions happen every pipe stage and with the use of <= they happen in parallel!

   // fi rst instruction  in the pipeline is being fetched

          IFIDIR <= IMemory[PC>>2]; 
          PC <= PC + 4;
      end // Fetch & increment PC

      // second instruction in pipeline is fetching registers 

         IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

         IDEXIR <= IFIDIR;  //pass along IR--can happen anywhere, since this affects next stage only!

      // third instruction is doing address calculation or ALU operation

      if ((IDEXop==LW) |(IDEXop==SW))  // address calculation 

           EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]}; 

         else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions

              32: EXMEMALUOut <= Ain + Bin;  //add operation

              default: ; //other R-type operations: subtract, SLT, etc.

         endcase

FIGURE 4.12.1 A Verilog behavorial model for the MIPS fi ve-stage pipeline, ignoring branch and data hazards. As in the design 
earlier in Chapter 4, we use separate instruction and data memories, which would be implemented using separate caches as we describe in Chapter 5. 
(continues on next page)
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Implementing Forwarding in Verilog 
To further extend the Verilog model, Figure 4.12.2 shows the addition of forward-
ing logic for the case when the source instruction is an ALU instruction and the 
source. Neither load stalls nor branches are handled; we will add these shortly. The 
changes from the earlier Verilog description are highlighted. 

Someone has proposed moving the write for a result from an ALU instruction 
from the WB to the MEM stage, pointing out that this would reduce the maximum 
length of forwards from an ALU instruction by one cycle. Which of the following 
are accurate rea sons not to consider such a change?

1. It would not actually change the forwarding logic, so it has no advantage.

2. It is impossible to implement this change under any circum stance since the 
write for the ALU result must stay in the same pipe stage as the write for a 
load result.

3. Moving the write for ALU instructions would create the possibility of writes 
occurring from two different instruc tions during the same clock cycle. Either 
an extra write port would be required on the register fi le or a structural 
hazard would be created.

4. The result of an ALU instruction is not available in time to do the write 
during MEM. 

Check 
Yourself

      EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

     //Mem stage of pipeline

     if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result

         else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2]; 

         else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store 

        MEMWBIR <= EXMEMIR; //pass along IR

     // the WB stage

     if ((MEMWBop==ALUop) & (MEMWBrd != 0)) // update registers if ALU operation and destination not 0
         Regs[MEMWBrd] <= MEMWBValue; // ALU operation

         else if ((EXMEMop == LW)& (MEMWBrt != 0)) // Update registers if load and destination not 0
            Regs[MEMWBrt] <= MEMWBValue;

   end
endmodule

FIGURE 4.12.1 A Verilog behavorial model for the MIPS fi ve-stage pipeline, ignoring branch and data hazards. (continued)
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module CPU (clock);
parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b00000_100000, ALUop = 6’b0;
input clock;
   reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories
            IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers
            EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers
   wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; //hold register fi elds
   wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes
   wire [31:0] Ain, Bin;

// declare the bypass signals 
   wire bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB,
        bypassAfromLWinWB, bypassBfromLWinWB; 

   assign IDEXrs = IDEXIR[25:21];    assign IDEXrt = IDEXIR[15:11];    assign EXMEMrd = EXMEMIR[15:11]; 
   assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26]; 
   assign MEMWBrt = MEMWBIR[25:20]; 
   assign MEMWBop = MEMWBIR[31:26];  assign IDEXop = IDEXIR[31:26];

   // The bypass to input A from the MEM stage for an ALU operation
   assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass

   // The bypass to input B from the MEM stage for an ALU operation
   assign bypassBfromMEM = (IDEXrt == EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass

   // The bypass to input A from the WB stage for an ALU operation
   assign bypassAfromALUinWB =( IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop); 

   // The bypass to input B from the WB stage for an ALU operation
   assign bypassBfromALUinWB = (IDEXrt == MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /

   // The bypass to input A from the WB stage for an LW operation
   assign bypassAfromLWinWB =( IDEXrs == MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW); 

   // The bypass to input B from the WB stage for an LW operation
   assign bypassBfromLWinWB = (IDEXrt == MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW); 

   // The A input to the ALU is bypassed from MEM if there is a bypass there, 
   // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
   assign Ain = bypassAfromMEM? EXMEMALUOut :
                (bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;

   // The B input to the ALU is bypassed from MEM if there is a bypass there, 
   // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
   assign Bin = bypassBfromMEM? EXMEMALUOut :
                (bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;

   reg [5:0] i; //used to initialize registers 

   initial begin  
       PC = 0; 
      IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers
       for (i = 0;i<=31;i = i+1) Regs[i] = i; //initialize registers--just so they aren’t cares
   end

   always @ (posedge clock) begin 

      // fi rst instruction in the pipeline is being fetched

          IFIDIR <= IMemory[PC>>2]; 
          PC <= PC + 4;
      end // Fetch & increment PC

FIGURE 4.12.2 A behavioral defi nition of the fi ve-stage MIPS pipeline with bypassing to ALU operations and address 
calculations. The code added to Figure 4.12.1 to handle bypassing is highlighted. Because these bypasses only require changing where the ALU inputs 
come from, the only changes required are in the combinational logic responsible for selecting the ALU inputs. (continues on next page)
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The Behavioral Verilog with Stall Detection

If we ignore branches, stalls for data hazards in the MIPS pipe line are confi ned 
to one simple case: loads whose results are cur rently in the WB clock stage. Thus, 
extending the Verilog to handle a load with a destination that is either an ALU 
instruction or an effective address calculation is reasonably straightfor ward, and 
Figure 4.12.3 shows the few additions needed.

Someone has asked about the possibility of data hazards occur ring through 
memory, as opposed to through a register. Which of the following statements about 
such hazards are true?

1. Since memory accesses only occur in the MEM stage, all memory operations 
are done in the same order as instruc tion execution, making such hazards 
impossible in this pipe line. 

2. Such hazards are possible in this pipeline; we just have not discussed 
them yet.

3. No pipeline can ever have a hazard involving memory, since it is the 
programmer’s job to keep the order of memory references accurate.

Check 
Yourself

      // second instruction is in register fetch 

         IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

         IDEXIR <= IFIDIR;  //pass along IR--can happen anywhere, since this affects next stage only!

      // third instruction is doing address calculation or ALU operation

      if ((IDEXop==LW) |(IDEXop==SW))  // address calculation & copy B

EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]}; 

else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions
           32: EXMEMALUOut <= Ain + Bin;  //add operation
           default: ; //other R-type operations: subtract, SLT, etc.
          endcase

      EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

      //Mem stage of pipeline
       if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result
          else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2]; 
          else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store 

       MEMWBIR <= EXMEMIR; //pass along IR

      // the WB stage

      if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

      else if ((EXMEMop == LW)& (MEMWBrt != 0)) Regs[MEMWBrt] <= MEMWBValue;

   end
endmodule

FIGURE 4.12.2 A behavioral defi nition of the fi ve-stage MIPS pipeline with bypassing to ALU operations and address 
calculations. (continued)
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module CPU (clock);
parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b00000_100000, ALUop = 6’b0;
input clock;
   reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories
             IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers
             EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers
   wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; //hold register fi elds
   wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes
   wire [31:0] Ain, Bin;

// declare the bypass signals 
   wire stall, bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB,
        bypassAfromLWinWB, bypassBfromLWinWB; 

   assign IDEXrs = IDEXIR[25:21];    assign IDEXrt = IDEXIR[15:11];    assign EXMEMrd = EXMEMIR[15:11]; 
   assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26];    
      assign MEMWBrt = MEMWBIR[25:20]; 
   assign MEMWBop = MEMWBIR[31:26];  assign IDEXop = IDEXIR[31:26];
   // The bypass to input A from the MEM stage for an ALU operation
   assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass
   // The bypass to input B from the MEM stage for an ALU operation
   assign bypassBfromMEM = (IDEXrt== EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass
   // The bypass to input A from the WB stage for an ALU operation
   assign bypassAfromALUinWB =( IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop); 
   // The bypass to input B from the WB stage for an ALU operation
   assign bypassBfromALUinWB = (IDEXrt==MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /
   // The bypass to input A from the WB stage for an LW operation
   assign bypassAfromLWinWB =( IDEXrs ==MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW); 
   // The bypass to input B from the WB stage for an LW operation
   assign bypassBfromLWinWB = (IDEXrt==MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW);
   // The A input to the ALU is bypassed from MEM if there is a bypass there, 
   // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
   assign Ain = bypassAfromMEM? EXMEMALUOut :
                (bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;
   // The B input to the ALU is bypassed from MEM if there is a bypass there, 
   // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
   assign Bin = bypassBfromMEM? EXMEMALUOut :
                (bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;

   // The signal for detecting a stall based on the use of a result from LW
   assign stall = (MEMWBIR[31:26]==LW) && // source instruction is a load
        ((((IDEXop==LW)|(IDEXop==SW)) && (IDEXrs==MEMWBrd)) | // stall for address calc
   ((IDEXop==ALUop) && ((IDEXrs==MEMWBrd)|(IDEXrt==MEMWBrd)))); // ALU use

   reg [5:0] i; //used to initialize registers 

   initial begin  
     PC = 0; 
    IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers
     for (i = 0;i<=31;i = i+1) Regs[i] = i; //initialize registers--just so they aren’t cares
   end

   always @ (posedge clock) begin 

     if (~stall) begin // the fi rst three pipeline stages stall if there is a load hazard

FIGURE 4.12.3 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU 
instruction or effective address calculation. The changes from Figure 4.12.2 are highlighted. (continues on next page)
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4. Memory hazards may be possible in some pipelines, but they cannot occur 
in this particular pipeline.

5. Although the pipeline control would be obligated to maintain ordering 
among memory references to avoid hazards, it is impossible to design a 
pipeline where the references could be out of order.

Implementing the Branch Hazard Logic in Verilog
We can extend our Verilog behavioral model to implement the control for branches. 
We add the code to model branch equal using a “predict not taken” strategy. The 
Verilog code is shown in Fig ure 4.12.4. It implements the branch hazard by detect-
ing a taken branch in ID and using that signal to squash the instruction in IF (by 
setting the IR to 0, which is an effective no-op in MIPS-32); in addition, the PC is 
assigned to the branch target. Note that to prevent an unexpected latch, it is impor-
tant that the PC is clearly assigned on every path through the always block; hence, 
we assign the PC in a single if statement. Lastly, note that although Figure 4.12.4 
incorporates the basic logic for branches and control hazards, the incorporation of 
branches requires addi tional bypassing and data hazard detection, which we have 
not included.

      // fi rst instruction  in the pipeline is being fetched
          IFIDIR <= IMemory[PC>>2]; 
          PC <= PC + 4;

         IDEXIR <= IFIDIR;  //pass along IR--can happen anywhere, since this affects next stage only!

      // second instruction is in register fetch 
       IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

      // third instruction is doing address calculation or ALU operation
          if ((IDEXop==LW) |(IDEXop==SW))  // address calculation & copy B
                 EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]}; 
         else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions
              32: EXMEMALUOut <= Ain + Bin;  //add operation
              default: ; //other R-type operations: subtract, SLT, etc.
            endcase
       EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register
     end

   else EXMEMIR <= no-op; /Freeze fi rst three stages of pipeline; inject a nop into the EX output

      //Mem stage of pipeline
       if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result
          else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2]; 
            else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store 

       MEMWBIR <= EXMEMIR; //pass along IR

      // the WB stage

      if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

      else if ((EXMEMop == LW)& (MEMWBrt != 0)) Regs[MEMWBrt] <= MEMWBValue;

   end
endmodule

FIGURE 4.12.3 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU 
instruction or effective address calculation. (continued)
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module CPU (clock);
parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, no-op = 32’b0000000_0000000_0000000_0000000, ALUop = 6’b0;
input clock;
   reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories
             IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers
             EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers
   wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd; //hold register fi elds
   wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes
   wire [31:0] Ain, Bin;
   // declare the bypass signals 
   wire takebranch, stall, bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB,
      bypassAfromLWinWB, bypassBfromLWinWB; 
   assign IDEXrs = IDEXIR[25:21];  assign IDEXrt = IDEXIR[15:11];  assign EXMEMrd = EXMEMIR[15:11]; 
   assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26];    
   assign MEMWBop = MEMWBIR[31:26];  assign IDEXop = IDEXIR[31:26];
   // The bypass to input A from the MEM stage for an ALU operation
   assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass
   // The bypass to input B from the MEM stage for an ALU operation
   assign bypassBfromMEM = (IDEXrt == EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass
   // The bypass to input A from the WB stage for an ALU operation
   assign bypassAfromALUinWB =( IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop); 
   // The bypass to input B from the WB stage for an ALU operation
   assign bypassBfromALUinWB = (IDEXrt == MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /
   // The bypass to input A from the WB stage for an LW operation
   assign bypassAfromLWinWB =( IDEXrs == MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW); 
   // The bypass to input B from the WB stage for an LW operation
   assign bypassBfromLWinWB = (IDEXrt == MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW); 
   // The A input to the ALU is bypassed from MEM if there is a bypass there, 
   // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
   assign Ain = bypassAfromMEM? EXMEMALUOut :
               (bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;
   // The B input to the ALU is bypassed from MEM if there is a bypass there, 
   // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
   assign Bin = bypassBfromMEM? EXMEMALUOut :
               (bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;
   // The signal for detecting a stall based on the use of a result from LW
   assign stall = (MEMWBIR[31:26]==LW) && // source instruction is a load
         ((((IDEXop==LW)|(IDEXop==SW)) && (IDEXrs==MEMWBrd)) | // stall for address calc
((IDEXop==ALUop) && ((IDEXrs==MEMWBrd)|(IDEXrt==MEMWBrd)))); // ALU use

FIGURE 4.12.4 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU 
instruction or effective address calculation. The changes from Figure 4.12.2 are highlighted. (continues on next page)
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// Signal for a taken branch: instruction is BEQ and registers are equal

assign takebranch = (IFIDIR[31:26]==BEQ) && (Regs[IFIDIR[25:21]]== Regs[IFIDIR[20:16]]); 

   reg [5:0] i; //used to initialize registers 
   initial begin  
      PC = 0; 
     IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers
      for (i = 0;i<=31;i = i+1) Regs[i] = i; //initialize registers--just so they aren’t don’t cares
   end

   always @ (posedge clock) begin 
   if (~stall) begin // the fi rst three pipeline stages stall if there is a load hazard
      if (~takebranch) begin     // fi rst instruction in the pipeline is being fetched normally
          IFIDIR <= IMemory[PC>>2]; 
          PC <= PC + 4;

      end else begin // a taken branch is in ID; instruction in IF is wrong; insert a no-op and reset the PC
         IFDIR <= no-op; 
         PC <= PC + 4 + ({{16{IFIDIR[15]}}, IFIDIR[15:0]}<<2); 
         end 

      // second instruction is in register fetch 
       IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

      // third instruction is doing address calculation or ALU operation
         IDEXIR <= IFIDIR;  //pass along IR
if ((IDEXop==LW) |(IDEXop==SW))  // address calculation & copy B
           EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]}; 
       else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions
             32: EXMEMALUOut <= Ain + Bin;  //add operation
             default: ; //other R-type operations: subtract, SLT, etc.
            endcase
       EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register
     end
   else EXMEMIR <= no-op; /Freeze fi rst three stages of pipeline; inject a nop into the EX output

      //Mem stage of pipeline
       if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result
          else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2]; 
            else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store 

      // the WB stage
MEMWBIR <= EXMEMIR; //pass along IR
      if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

      else if ((EXMEMop == LW)& (MEMWBIR[20:16] != 0)) Regs[MEMWBIR[20:16]] <= MEMWBValue;

   end
endmodule

FIGURE 4.12.4 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is an ALU 
instruction or effective address calculation. (continued)
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Using Verilog for Behavioral Specifi cation with Synthesis

To demonstate the contrasting types of Verilog, we show two descriptions of a dif-
ferent, nonpipelined implementation style of MIPS that uses multiple clock cycles 
per instruction. (Since some instructors make a synthesizeable description of the 
MIPS pipe line project for a class, we chose not to include it here. It would also be 
long.)

Figure 4.12.5 gives a behavioral specifi cation of a multicycle implementation 
of the MIPS processor. Because of the use of behavioral operations, it would be 
diffi cult to synthesize a sepa rate datapath and control unit with any reasonable 
effi ciency. This version demonstrates another approach to the control by using a 
Mealy fi nite-state machine (see discussion in Section C.10 of  Appendix C). The 
use of a Mealy machine, which allows the output to depend both on inputs and the 
current state, allows us to decrease the total number of states. 

Since a version of the MIPS design intended for synthesis is considerably 
more complex, we have relied on a number of Ver ilog modules that were specifi ed 
in  Appendix C, including the following:

 ■ The 4-to-1 multiplexor shown in Figure C.4.2, and the 3-to-1 multiplexor 
that can be trivially derived based on the 4-to-1 multiplexor.

 ■ The MIPS ALU shown in Figure C.5.15.

 ■ The MIPS ALU control defi ned in Figure C.5.16. 

 ■ The MIPS register fi le defi ned in Figure C.8.11. 

Now, let’s look at a Verilog version of the MIPS processor intended for synthesis. 
Figure 4.12.6 shows the structural version of the MIPS datapath. Figure 4.12.7 uses 
the datapath module to specify the MIPS CPU. This version also demonstrates 
another approach to implementing the control unit, as well as some optimi zations 
that rely on relationships between various control signals. Observe that the state 
machine specifi cation only provides the sequencing actions. 

The setting of the control lines is done with a series of assign statements that 
depend on the state as well as the opcode fi eld of the instruction register. If one 
were to fold the setting of the control into the state specifi cation, this would look 
like a Mealy-style fi nite-state control unit. Because the setting of the control lines 
is specifi ed using assign statements outside of the always block, most logic 
synthesis systems will generate a small imple mentation of a fi nite-state machine 
that determines the setting of the state register and then uses external logic to 
derive the control inputs to the datapath.   

In writing this version of the control, we have also taken advantage of a number 
of insights about the relationship between various control signals as well as 
situations where we don’t care about the control signal value; some examples of 
these are given in the following elaboration. 
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module CPU (clock);

parameter LW = 6’b100011, SW = 6’b101011, BEQ=6’b000100, J=6’d2;

input clock; //the clock is an external input

// The architecturally visible registers and scratch registers for implementation
reg [31:0] PC, Regs[0:31], Memory [0:1023], IR, ALUOut, MDR, A, B;

reg [2:0] state; // processor state 

wire [5:0] opcode; //use to get opcode easily

wire [31:0] SignExtend,PCOffset; //used to get sign-extended offset fi eld

assign opcode = IR[31:26]; //opcode is upper 6 bits

assign SignExtend = {{16{IR[15]}},IR[15:0]}; //sign extension of lower 16 bits of instruction

assign PCOffset = SignExtend << 2; //PC offset is shifted

// set the PC to 0 and start the control in state 0
initial begin PC = 0; state = 1; end

//The state machine--triggered on a rising clock
always @(posedge clock) begin 

    Regs[0] = 0; //make R0 0 //shortcut way to make sure R0 is always 0

    case (state) //action depends on the state

      1: begin // fi rst step: fetch the instruction, increment PC, go to next state

         IR <= Memory[PC>>2];   
         PC <= PC + 4; 
         state = 2; //next state

      end

      2: begin // second step: Instruction decode, register fetch, also compute branch address

         A <= Regs[IR[25:21]];    
         B <= Regs[IR[20:16]]; 
         state = 3;
         ALUOut <= PC + PCOffset; // compute PC-relative branch target

      end

      3: begin // third step: Load-store execution, ALU execution, Branch completion

           state = 4; // default next state
           if ((opcode==LW) |(opcode==SW)) ALUOut <= A + SignExtend; //compute effective address
           else if (opcode==6’b0) case (IR[5:0]) //case for the various R-type instructions
             32: ALUOut = A + B; //add operation
             default: ALUOut = A; //other R-type operations: subtract, SLT, etc.
           endcase

FIGURE 4.12.5 A behavioral specifi cation of the multicycle MIPS design. This has the same cycle behavior as the multicycle design, but 
is purely for simulation and specifi cation. It cannot be used for synthesis. (con tinues on next page) 
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          else if (opcode == BEQ) begin 
                     if (A==B) PC <= ALUOut; // branch taken--update PC 
                     state = 1; 
           end

           else if (opocde=J) begin 
                PC = {PC[31:28], IR[25:0],2’b00}; // the jump target PC
                state = 1; 
           end  //Jumps

                   else ; // other opcodes or exception for undefi ned instruction would go here
   end

   4: begin 
       if (opcode==6’b0) begin //ALU Operation
             Regs[IR[15:11]] <= ALUOut; // write the result
             state = 1; 
       end //R-type fi nishes

          else if (opcode == LW) begin // load instruction
              MDR <= Memory[ALUOut>>2]; // read the memory
              state = 5; // next state
           end

                  else if (opcode == LW) begin 
                      Memory[ALUOut>>2] <= B; // write the memory
                      state = 1; // return to state 1 
                  end //store fi nishes

                       else ; // other instructions go here 

         end

   5: begin // LW is the only instruction still in execution
         Regs[IR[20:16]] = MDR; // write the MDR to the register
         state = 1;
      end //complete an LW instruction
   endcase
end
endmodule

FIGURE 4.12.5  A behavioral specifi cation of the multicycle MIPS design. (continued) 
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module Datapath (ALUOp, RegDst, MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite,
PCWrite,   PCWriteCond, ALUSrcA, ALUSrcB, PCSource, opcode, clock); // the control inputs + clock
input [1:0] ALUOp, ALUSrcB, PCSource; // 2-bit control signals 
input RegDst, MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite, PCWrite, PCWriteCond,
ALUSrcA,    clock; // 1-bit control signals
output [5:0] opcode ;// opcode is needed as an output by control
reg [31:0] PC, Memory [0:1023], MDR,IR, ALUOut; // CPU state + some temporaries
wire [31:0] A,B,SignExtendOffset, PCOffset, ALUResultOut, PCValue, JumpAddr, Writedata, ALUAin, 
    ALUBin,MemOut; / these are signals derived from registers 
wire [3:0] ALUCtl; //. the ALU control lines
wire Zero; the Zero out signal from the ALU
wire[4:0] Writereg;// the signal used to communicate the destination register 
 initial PC = 0; //start the PC at 0

//Combinational signals used in the datapath

// Read using word address with either ALUOut or PC as the address source
assign MemOut = MemRead ? Memory[(IorD ? ALUOut : PC)>>2]:0; 
assign opcode = IR[31:26];// opcode shortcut

// Get the write register address from one of two fi elds depending on RegDst
assign Writereg = RegDst ? IR[15:11]: IR[20:16];

// Get the write register data either from the ALUOut or from the MDR
assign Writedata = MemtoReg ? MDR : ALUOut;

// Sign-extend the lower half of the IR from load/store/branch offsets
assign SignExtendOffset = {{16{IR[15]}},IR[15:0]}; //sign-extend lower 16 bits;

// The branch offset is also shifted to make it a word offset
assign PCOffset = SignExtendOffset << 2; 

// The A input to the ALU is either the rs register or the PC
assign ALUAin = ALUSrcA ? A : PC; //ALU input is PC or A 

// Compose the Jump address
assign JumpAddr = {PC[31:28], IR[25:0],2’b00}; //The jump address

FIGURE 4.12.6 A Verilog version of the multicycle MIPS datapath that is appropriate for synthe sis. This datapath relies on several 
units from  Appendix C. Initial statements do not synthesize, and a version used for synthesis would have to incorporate a reset signal that had this 
effect. Also note that resetting R0 to 0 on every clock is not the best way to ensure that R0 stays 0; instead, modifying the register fi le module to produce 
0 whenever R0 is read and to ignore writes to R0 would be a more effi cient solution. (continues on next page) 
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// Creates an instance of the ALU control unit (see the module defi ned in Figure C.5.16 on page C-38

   // Input ALUOp is control-unit set and used to describe the instruction class as in Chapter 4
   // Input IR[5:0] is the function code fi eld for an ALU instruction
   // Output ALUCtl are the actual ALU control bits as in Chapter 4

ALUControl alucontroller (ALUOp,IR[5:0],ALUCtl); //ALU control unit

// Creates a 3-to-1 multiplexor used to select the source of the next PC

    // Inputs are ALUResultOut (the incremented PC) , ALUOut (the branch address), the jump target address
   // PCSource is the selector input and PCValue is the multiplexor output

Mult3to1 PCdatasrc (ALUResultOut,ALUOut,JumpAddr, PCSource , PCValue); 

 // Creates a 4-to-1 multiplexor used to select the B input of the ALU

   //  Inputs are register B,constant 4, sign-extended lower half of IR, sign-extended lower half of IR << 2
   // ALUSrcB is the selector input
   // ALUBin is the multiplexor output

Mult4to1 ALUBinput (B,32’d4,SignExtendOffset,PCOffset,ALUSrcB,ALUBin); 

 // Creates a MIPS ALU

   // Inputs are ALUCtl (the ALU control), ALU value inputs (ALUAin, ALUBin)
   // Outputs are ALUResultOut (the 32-bit output) and Zero (zero detection output)

MIPSALU ALU (ALUCtl, ALUAin, ALUBin, ALUResultOut,Zero); //the ALU 

// Creates a MIPS register fi le

   // Inputs are 
   // the rs and rt fi elds of the IR used to specify which registers to read,
    // Writereg (the write register number), Writedata (the data to be written), RegWrite (indicates a 

write), the clock
// Outputs are A and B, the registers read
registerfi le regs (IR[25:21],IR[20:16],Writereg,Writedata,RegWrite,A,B,clock); //Register fi le

// The clock-triggered actions of the datapath

always @(posedge clock) begin   if (MemWrite) Memory[ALUOut>>2] <= B; // Write memory--must be a store

   ALUOut <= ALUResultOut; //Save the ALU result for use on a later clock cycle

   if (IRWrite) IR <= MemOut; // Write the IR if an instruction fetch 

   MDR <= MemOut; // Always save the memory read value

   // The PC is written both conditionally (controlled by PCWrite) and unconditionally
      if (PCWrite || (PCWriteCond & Zero)) PC <=PCValue; 

end 
endmodule

FIGURE 4.12.6 A Verilog version of the multicycle MIPS datapath that is appropriate for synthe sis. (continued)
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module CPU (clock);

   parameter LW = 6’b100011, SW = 6’b101011, BEQ = 6’b000100, J = 6’d2; //constants 

   input clock; reg [2:0] state;

   wire [1:0] ALUOp, ALUSrcB, PCSource; wire [5:0] opcode; 

   wire RegDst, MemRead, MemWrite, IorD, RegWrite, IRWrite, PCWrite, PCWriteCond, 

        ALUSrcA, MemoryOp, IRWwrite, Mem2Reg; 

// Create an instance of the MIPS datapath, the inputs are the control signals; opcode is only output

Datapath MIPSDP (ALUOp,RegDst,Mem2Reg, MemRead, MemWrite, IorD, RegWrite, 
   IRWrite, PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource, opcode, clock);

 initial begin state = 1; end // start the state machine in state 1

// These are the defi nitions of the control signals

assign IRWrite = (state==1);

assign Mem2Reg = ~ RegDst;

assign MemoryOp = (opcode==LW)|(opcode==SW); // a memory operation

assign ALUOp = ((state==1)|(state==2)|((state==3)&MemoryOp)) ? 2’b00 : // add

       ((state==3)&(opcode==BEQ)) ? 2’b01 : 2’b10; // subtract or use function code

   assign RegDst = ((state==4)&(opcode==0)) ? 1 : 0;

   assign MemRead = (state==1) | ((state==4)&(opcode==LW));

   assign MemWrite = (state==4)&(opcode==SW);

   assign IorD = (state==1) ? 0 : (state==4) ? 1 : X;

   assign RegWrite = (state==5) | ((state==4) &(opcode==0));

   assign PCWrite = (state==1) | ((state==3)&(opcode==J)); 

   assign PCWriteCond = (state==3)&(opcode==BEQ);

   assign ALUSrcA = ((state==1)|(state==2)) ? 0 :1;

   assign ALUSrcB = ((state==1) | ((state==3)&(opcode==BEQ))) ? 2’b01 : (state==2) ? 2’b11 :

          ((state==3)&MemoryOp) ? 2’b10 : 2’b00; // memory operation or other

   assign PCSource = (state==1) ? 2’b00 : ((opcode==BEQ) ? 2’b01 : 2’b10); 

// Here is the state machine, which only has to sequence states

   always @(posedge clock) begin // all state updates on a positive clock edge

      case (state)

      1: state = 2;  //unconditional next state

      2: state = 3;  //unconditional next state

      3: // third step: jumps and branches complete

         state = ((opcode==BEQ) | (opcode==J)) ? 1 : 4;// branch or jump go back else next state

      4: state = (opcode==LW) ? 5 : 1; //R-type and SW fi nish

      5: state = 1; // go back

       endcase 
end

  endmodule

FIGURE 4.12.7 The MIPS CPU using the datapath from Figure 4.12.6.
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Elaboration: When specifying control, designers often take advantage of knowledge 
of the control so as to simplify or shorten the control specifi ca tion. Here are a few exam-
ples from the specifi cation in Figures 4.12.6 and 4.12.7. 

1. MemtoReg is set only in two cases, and then it is always the inverse of RegDst, so 
we just use the inverse of RegDst. 

2. IRWrite is set only in state 1.

3. The ALU does not operate in every state and, when unused, can safely do any-
thing. 

4. RegDst is 1 in only one case and can otherwise be set to 0. In practice it might be 
better to set it explicitly when needed and otherwise set it to X, as we do for IorD. 
First, it allows additional logic optimization possibilities through the exploitation of 
don’t-care terms (see  Ap pendix C for further discussion and examples).  Second, 
it is a more pre cise specifi cation, and this allows the simulation to more closely 
model the hardware, possibly uncovering additional errors in the specifi ca tion. 

More Illustrations of Instruction Execution on the 
Hardware

To reduce the cost of this book, in the third edition we moved sections and fi gures 
that were used by a minority of instructors onto a companion CD. This subsection 
recaptures those fi gures for readers who would like more supplemental material to 
better understand pipelining. These are all single-clock-cycle pipeline diagrams, 
which take many fi gures to illustrate the execution of a sequence of instructions.

The three examples are for code with no hazards, an example of forwarding 
on the pipelined implementation, and an example of bypassing on the pipelined 
implementation.

No Hazard Illustrations
On page 356, we gave the example code sequence

lw   $10, 20($1)
sub  $11, $2, $3 

Figures 4.43 and 4.44 showed the multiple-clock-cycle pipeline diagrams for this 
two-instruction sequence exe cuting across six clock cycles. Figures 4.12.8 through 
4.12.10 show the corresponding single-clock-cycle pipeline diagrams for these 
two instructions. Note that the order of the instructions differs between these two 
types of diagrams: the newest instruction is at the bottom and to the right of the 
multiple-clock-cycle pipeline diagram, and it is on the left in the single-clock-cycle 
pipeline diagram.
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FIGURE 4.12.8 Single-cycle pipeline diagrams for clock cycles 1 (top diagram) and 2 (bottom diagram). This style of pipeline 
representation is a snap shot of every instruction executing during one clock cycle. Our example has but two instructions, so at most two stages are 
identifi ed in each clock cycle; normally, all fi ve stages are occupied. The highlighted portions of the datapath are active in that clock cycle. The load is 
fetched in clock cycle 1 and decoded in clock cycle 2, with the subtract fetched in the second clock cycle. To make the fi gures easier to understand, the 
other pipeline stages are empty, but normally there is an instruction in every pipeline stage.
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FIGURE 4.12.9 Single-cycle pipeline diagrams for clock cycles 3 (top diagram) and 4 (bottom diagram). In the third clock cycle 
in the top diagram, lw enters the EX stage. At the same time, sub enters ID. In the fourth clock cycle (bottom datapath), lw moves into MEM stage, 
reading memory using the address found in EX/MEM at the beginning of clock cycle 4. At the same time, the ALU subtracts and then places the 
difference into EX/MEM at the end of the clock cycle.
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FIGURE 4.12.10 Single-cycle pipeline diagrams for clock cycles 5 (top diagram) and 6 (bottom diagram). In clock cycle 5, lw 
completes by writing the data in MEM/WB into register 10, and sub sends the difference in EX/MEM to MEM/WB. In the next clock cycle, sub writes the 
value in MEM/WB to register 11.
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More Examples
To understand how pipeline control works, let’s consider these fi ve instructions 

going through the pipeline:

lw     $10, 20($1)
sub    $11, $2, $3
and    $12, $4, $5
or     $13, $6, $7
add    $14, $8, $9

Figures 4.12.11 through 4.12.15 show these instructions pro ceeding through the 
nine clock cycles it takes them to complete exe cution, highlighting what is active in a 
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FIGURE 4.12.11 Clock cycles 1 and 2. The phrase “before<i>” means the i th instruction before lw. The lw instruction in the top datapath is 
in the IF stage. At the end of the clock cycle, the lw instruction is in the IF/ID pipeline registers. In the second clock cycle, seen in the bottom datapath, 
the lw moves to the ID stage, and sub enters in the IF stage. Note that the values of the instruction fi elds and the selected source registers are shown in 
the ID stage. Hence register $1 and the constant 20, the operands of lw, are written into the ID/EX pipeline register. The number 10, representing the 
destination reg ister number of lw, is also placed in ID/EX. Bits 15–11 are 0, but we use X to show that a fi eld plays no role in a given instruction. The 
top of the ID/EX pipeline register shows the control values for lw to be used in the remaining stages. These control values can be read from the lw row 
of the table in Figure 4.18.
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FIGURE 4.12.12 Clock cycles 3 and 4. In the top diagram, lw enters the EX stage in the third clock cycle, adding $1 and 20 to form the address 
in the EX/MEM pipeline register. (The lw instruction is written lw $10,... upon reaching EX, because the identity of instruction operands is 
not needed by EX or the subse quent stages. In this version of the pipeline, the actions of EX, MEM, and WB depend only on the instruction and its 
destination register or its target address.) At the same time, sub enters ID, reading registers $2 and $3, and the and instruction starts IF. In the fourth 
clock cycle (bottom datapath), lw moves into MEM stage, reading memory using the value in EX/MEM as the address. In the same clock cycle, the ALU 
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FIGURE 4.12.13 Clock cycles 5 and 6. With add, the fi nal instruction in this example, entering IF in the top datapath, all instructions are 
engaged. By writing the data in MEM/WB into register 10, lw com pletes; both the data and the register number are in MEM/WB. In the same clock 
cycle, sub sends the differ ence in EX/MEM to MEM/WB, and the rest of the instructions move forward. In the next clock cycle, sub selects the value in 
MEM/WB to write to register number 11, again found in MEM/WB. The remaining instructions play follow-the-leader: the ALU calculates the OR of 
$6 and $7 for the or instruction in the EX stage, and registers $8 and $9 are read in the ID stage for the add instruction. The instructions after add are 
shown as inactive just to emphasize what occurs for the fi ve instructions in the example. The phrase “after<i>” means the i th instruction after add.
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FIGURE 4.12.14 Clock cycles 7 and 8. In the top datapath, the add instruction brings up the rear, adding the values corresponding to registers 
$8 and $9 during the EX stage. The result of the or instruction is passed from EX/MEM to MEM/WB in the MEM stage, and the WB stage writes the 
result of the and instruction in MEM/WB to register $12. Note that the control signals are deasserted (set to 0) in the ID stage, since no instruction is 
being executed. In the following clock cycle (lower drawing), the WB stage writes the result to register $13, thereby completing or, and the MEM stage 
passes the sum from the add in EX/MEM to MEM/WB. The instructions after add are shown as inac tive for pedagogical reasons. 
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FIGURE 4.12.15 Clock cycle 9. The WB stage writes the sum in MEM/WB into reg ister $14, completing add and the fi ve-instruction sequence. 
The instructions after add are shown as inactive for pedagogical reasons.
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stage and identifying the instruction associated with each stage during a clock cycle. If 
you examine them carefully, you may notice:

 ■ In Figure 4.12.13 you can see the sequence of the destination register numbers 
from left to right at the bottom of the pipeline registers. The numbers advance to 
the right during each clock cycle, with the MEM/WB pipeline register sup plying 
the number of the register written during the WB stage.

 ■ When a stage is inactive, the values of control lines that are deasserted are shown 
as 0 or X (for don’t care).

 ■ Sequencing of control is embedded in the pipeline structure itself. First, all 
instructions take the same number of clock cycles, so there is no special control 
for instruction dura tion. Second, all control information is computed during 
instruction decode and then passed along by the pipeline registers. 
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Forwarding Illustrations
We can use the single-clock-cycle pipeline diagrams to show how forwarding 

operates, as well as how the control activates the forwarding paths. Consider the 
following code sequence in which the dependences have been highlighted:

sub    $2, $1, $3
and    $4, $2, $5
or     $4, $4, $2
add    $9, $4, $2

Figures 4.12.16 and 4.12.17 show the events in clock cycles 3–6 in the execution of 
these instructions. 

In clock cycle 4, the forwarding unit sees the writing by the sub instruction of 
register $2 in the MEM stage, while the and instruction in the EX stage is reading 
register $2. The forwarding unit selects the EX/MEM pipeline register instead of 
the ID/EX pipeline register as the upper input to the ALU to get the proper value 
for register $2. The following or instruction reads register $4, which is written by 
the and instruction, and register $2, which is written by the sub instruction. 

Thus, in clock cycle 5, the forwarding unit selects the EX/MEM pipeline register 
for the upper input to the ALU and the MEM/WB pipeline register for the lower 
input to the ALU. The following add instruction reads both register $4, the target 
of the and instruc tion, and register $2, which the sub instruction has already writ-
ten. Notice that the prior two instructions both write register $4, so the forwarding 
unit must pick the immediately preceding one (MEM stage). 

In clock cycle 6, the forwarding unit thus selects the EX/MEM pipeline register, 
containing the result of the or instruction, for the upper ALU input but uses the 
nonforwarding register value for the lower input to the ALU. 

Illustrating Pipelines with Stalls and Forwarding

We can use the single-clock-cycle pipeline diagrams to show how the control 
for stalls works. Figures 4.12.18 through 4.12.20 show the single-cycle diagram for 
clocks 2 through 7 for the following code sequence (dependences highlighted):

lw     $2, 20($1)
and    $4, $2,$5
or     $4, $4,$2
add    $9, $4,$2
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FIGURE 4.12.16 Clock cycles 3 and 4 of the instruction sequence on page 4.12-25. The bold lines are those active in a clock cycle, and 
the italicized register numbers in color indicate a hazard. The forwarding unit is highlighted by shading it when it is forwarding data to the ALU. The 
instructions before sub are shown as inactive just to emphasize what occurs for the four instructions in the example. Operand names are used in EX for 
control of forwarding; thus they are included in the instruction label for EX. Operand names are not needed in MEM or WB, so . . . is used. Compare 
this with Figures 4.12.12 through 4.12.15, which show the datapath without forwarding where ID is the last stage to need operand information.
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FIGURE 4.12.17 Clock cycles 5 and 6 of the instruction sequence on page 4.12-25. The forwarding unit is highlighted when it is 
forwarding data to the ALU. The two instructions after add are shown as inactive just to emphasize what occurs for the four instructions in the example. 
The bold lines are those active in a clock cycle, and the italicized register numbers in color indicate a hazard. 
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FIGURE 4.12.18 Clock cycles 2 and 3 of the instruction sequence on page 4.12-25 with a load replacing sub. The bold lines 
are those active in a clock cycle, the italicized register numbers in color indicate a hazard, and the . . . in the place of operands means that their identity 
is information not needed by that stage. The values of the signifi cant control lines, registers, and register numbers are labeled in the fi gures. The and 
instruction wants to read the value created by the lw instruction in clock cycle 3, so the hazard detection unit stalls the and and or instructions. Hence, 
the hazard detection unit is highlighted.
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FIGURE 4.12.19 Clock cycles 4 and 5 of the instruction sequence on page 4.12-25 with a load replacing sub. The bubble is 
inserted in the pipeline in clock cycle 4, and then the and instruction is allowed to proceed in clock cycle 5. The forwarding unit is highlighted in clock 
cycle 5 because it is for warding data from lw to the ALU. Note that in clock cycle 4, the forwarding unit forwards the address of the lw as if it were the 
contents of register $2; this is rendered harmless by the insertion of the bubble. The bold lines are those active in a clock cycle, and the italicized register 
numbers in color indicate a hazard. 
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FIGURE 4.12.20 Clock cycles 6 and 7 of the instruction sequence on page 4.12-25 with a load replacing sub. Note that unlike 
in Figure 4.12.17, the stall allows the lw to complete, and so there is no forwarding from MEM/WB in clock cycle 6. Register $4 for the add in the EX 
stage still depends on the result from or in EX/MEM, so the forwarding unit passes the result to the ALU. The bold lines show ALU input lines active in 
a clock cycle, and the italicized register numbers indicate a hazard. The instruc tions after add are shown as inactive for pedagogical reasons. 
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