Lecture 4. Instructions

Functionality and usage

Yuri Panchul, 2014

Arithmetic

e addurd, rs, rt

o rd=rs+rt

addiu rt, rs, iImm - signed 16-bit value

o rt=rs + sign_extend (imm)

subu rd, rs, rt

mul rd, rs, rt

mult and div use special registers hi and lo

Explanation about unused add, addi, etc

Synthetic forms of addu

e addurd, rs
o A mnemonic for addu rd, rd, rs

e addu rt, rs, Imm
A mnemonic for addiu rt, rs, imm

e addu rt, imm

e addiu rt, Imm
o A mnemonic for addiu rt, rt, imm

Synthetic forms of subu

subu rd, rs
o A mnemonic for subu rd, rd, rs

subu rt, rs, Imm
A mnemonic for addiu rt, rs, -imm

subu rt, Imm
o A mnemonic for addiu rt, rt, -imm

negu rd, rs
o A mnemonic for subu rd, $0, rs

Bitwise logical

and rd, rs, rt
o rd=rs &t

andi rt, rs, imm - unsigned 16
o rd=rs &imm

Similarly or, ori, xor, xori

nor

o rd=~(rs|rt)

Note there Is no nori

Synthetic logical

e move rd, rs

o Register move
o Mnemonics for: or rd, rs, $0

Shifts left

e sllrd, rt, shift

o rd =rt << shift

o slivrd, rt, rs
o rd=rt<<rs

® Assembler can convert sra mnemonic into srav

Arithmetic and logical shifts right

e Arithmetic shift - propagating the sign bit
o srard, rt, shift
o sravrd, rt, rs
o Assembler can convert sra mnemonic into srav
o Useful to implement signed division by 2"

e | ogical shift - bringing zeros into high bits
o srlrd, rt, shift
o srlvrd, rt, rs
o Useful to implement unsigned division by 2"

Load constant

e |uirt, imm - signed 16-bit value
o Load upper immediate
o rt=imm<<16
e |ird, constant
o Synthetic instruction to load immediate constant

e |a rd, address
o Synthetic instruction to load address
o Address expression may use labels

Different synthetic forms of i

e Form with unsigned 16-bit argument
o imm >=0 && imm < 0x10000 (65536)
o orird, $0, imm
e Form with signed negative 16-bit argument
o imm < 0 && imm >= -OxFFFF (-32768)
o addiu rd, $0, imm
e Form for other 32-bit immediates
o luird, hi16 (imm); ori rd, rd, 1016 (imm)

Set if...

e sltrd, rs, rt
o if (signed (rs) < signed (rt))rd = 1; elserd =0
e sltird, rs, Imm - 16 bit sighed immediate
o if (signed (rs) < signed (imm))rd =1; elserd =0
e sltu and sltiu - use unsigned comparison
e Note that in sltiu 16-bit immediate is still
sign-extended to 32 bits, then compared

using unsigned comparison

Synthetic set if...

® seq, she

o set if equal (==), set if not equal (!=)
e sge/sgeu

o signed / unsigned set if greater than or equal (>=)
e sgt/sgtu

o signed / unsigned set if greater than (>)

e sle/sleu
o signed / unsigned set if less than or equal (<=)

Loads and stores

e |brd, address

o Load byte, sign-extended
o Fill bits [31:8] in MIPS32, [63:8] in MIPS64 with bit 7

e |bu rd, address

o Load byte, unsigned
o Fill bits [31:8] in MIPS32, [63:8] in MIPS64 with 0

e |h, |hu
o Similarly with 2-byte halfwords

Loads and stores - continue

e |w rd, address
o Load 4-byte word

e sb rd, address
o Store byte, signed and unsigned form is
unnecessary

e shrd, address
o Store 2-byte halfword

e Sw rd, address
o Store 4-byte word

Branches, jumps and calls

e PC-relative branches (PC = program

counter)

o Short range - 256KB - use 16 bit word offset
o Use condition

e Absolute addressed jumps with constant
o Long range - 256MB - uses 26 bit word address

e Jump to register - full 32/64 bit in MIPS32/64
e Function calls (subroutines/procedures)
e All branches, jumps and calls use delay slots

Branches - beq, b, beqz

e beqrs, rt, label
o if (rs == rt) goto label
o Uses 16 bit word offset
o Range +/- 128KB

e Db label

o A mnemonic for beq $0, $0, label

e beqzrs, label
o A mnemonic for beq rs, $0, label

Branches - bgez, bge, bgeu

e bgezrs, label
o Signed, if (rs >= 0) goto label
o Signed comparison obviously
e bge rs, rt, label
o Synthetic slt at, rs, rt; beq at, $0, label
o Signed, if (rs >= rt) goto label
e bgeurs, rt, label

o Synthetic sltu at, rs, rt; beq at, $0, label
o Unsigned, if (rs >= rt) goto label

Branches - bgtz, bgt, bgtu

e bgtzrs, label
o Signed, if (rs > 0) goto label
o Signed comparison
e bgtrs, rt, label
o Synthetic slt at, rt, rs; bne at, $0, label
o Signed, if (rs > rt) goto label
e bgturs, rt, label

o Synthetic sltu at, rt, rs; bne at, $0, label
o Unsigned, if (rs > rt) goto label

Compare bge and bgt

e bge rs, rt, label

o sltat,rs, rt

o beq at, $0, label

o if ((rs <rt) == 0) goto label
e bgtrs, rt, label

o sltat, rt,rs

o bne at, $0, label

o if ((rt <rs)==1) goto label

Other branches

e Other true machine instruction branches
o blezrs, label
m Branch if less or equal to zero
o bltz rs, label
m Branch if less than zero
o bners, rt, label
m Branch if rs not equal to rt

e Other synthetic branches
o ble, bleu, blt, bltu

Absolute jumps

e |label
Absolute addressed jumps with constant
Long range - 256MB
Uses 26 bit word address
Lowest 2 bits assumed to be 0
Highest 4 bits are kept as current PC
® |I IS
o Jump to address in register
o 32-bitin MIPS32,64 bit in MIPS64

O O O O O

Function calls - short range

e bgezal rs, label
o if (rs >= 0) call function
o Return address is unconditionally saved in ra ($31)

e Dltzal rs, label
if (rs < 0) call function
Return address is unconditionally saved in ra ($31)

e bal label
o Mnemonics for bgezal $0, label

Function calls - long range

e jal label

o Return address is saved inra ($31)
e jalrrd, rs

o Store return address to rd, jump to the contents of rs
e jalrrs

o Mnemonics forjalrra, rs

Using stack for function calls

e Stack pointer - register sp ($29)
e Frame pointer - register fp ($30)
e The discussion how to use stack

MIPS64 - compatible with MIPS32

In MIPS64 32-bit operands in 64-bit registers
are treated as signed-extended

Instructions like addiu simply continue to
work

Operand in load upper immediate (lui rt,
Imm) is sign-extended

o Sign is copied in bits [63:32] of the target register
Additional instructions for 64-bit operands

Additional MIPS64 instructions

daddu, daddiu, dsubu, dmul
dsll, dsllv, dsra, dsrav

Constant shift >32 bit - dsll32, dsra32, dsrl32
|d

lwu
Synthetic dla, dIi

Instructions that do nothing

e Any instruction that targets $0

e nop - mnemonic for sll $0, $0, O
o Convenient because it encodes as 0x00000000
e ssnop - sll $0, $0, 1

o Special treatment on superscalar processors
m Guaranteed to spend at least 1 clock cycle to run

Instructions to discuss later

syscall - causes a system call exception
di and el - disable and enable interrupts
eret - return from exception

cache - instruction to work with caches
Sync - memory access synchronizer

Instructions to discuss later - 2

Il - load linked, for atomic access

sc - store conditional, for atomic access
mfcO - move from coprocessor O

mtcO - move to coprocessor O

ehb - execution hazard barrier, for
coprocessor 0 access

Useful sometimes

clo and clz - count leading ones and zeros
ext and ins - bit manipulation

rol and ror - rotations

seb and seh - sign extension

wsbh - byte swap

MIPS64 additions to all the above

o Except seb and seh, they don’'t need MIPS64
version

C:\aaa_npulmars_mips_simulator\Fibonacci.asm - MARS 4.4

How to practice - MARS simulator

A=

File Edit Run Settings Tools Help

B = s
SRR AR %0 # < Q ©
: 1

Edit | Execute | b Coproc 0

e | Registers Coproc 1 |
Text Segment
= Mlame| Mum... Walle

Ekpt Address Code Basic | Fyem 0l 000000000
|:| 000400000 0x3c0ll00l/lui §1,0<00001001 o: la gtl, f£ibs Sat 1l 0x10010000
|:| Q00400004 0x34250000)0ri 55,51, 000000000 s 2| 0=0000000a
|:| 000400005 0x3c0ll00l/lui §1,0<00001001 i la §t5, Ziee gul 3| D=00000000
|:| 00040000 0x342d0030/ori §13,51 000000030 a0 4l 0x10010034
|:| 0x00400010] Ox3dad0000({lw £13,0x00000000¢5135) | 8: L gto, O(§L5]) gal | oxo00000ne
il— Faz & 000000000
Data Segment 7| 0=x00000000
5 g 010010030
Address Yalue (+0) Value (+4) Yalue (+8) Yalue (+c) Value (100 Sfle) a| Qx00000000
010010000 Ox00000001 000000001 000000002 000000003 0x00000C) s 2 10/ 0x00000090
010010020 000000022 000000037 000000059 000000090 0x00000C) 2.3 11/ 000000037
0=10010040 OxZ0696363 Ox6Z6d756e OxZ20737265 0x3a657261 Ox00000C| 5 s g 12| 0x00000059

Thank you!

