
Lecture 4. Instructions
Functionality and usage

Yuri Panchul, 2014

Arithmetic

● addu rd, rs, rt
○ rd = rs + rt

● addiu rt, rs, imm - signed 16-bit value
○ rt = rs + sign_extend (imm)

● subu rd, rs, rt
● mul rd, rs, rt
● mult and div use special registers hi and lo
● Explanation about unused add, addi, etc

Synthetic forms of addu

● addu rd, rs
○ A mnemonic for addu rd, rd, rs

● addu rt, rs, imm
A mnemonic for addiu rt, rs, imm

● addu rt, imm
● addiu rt, imm

○ A mnemonic for addiu rt, rt, imm

Synthetic forms of subu

● subu rd, rs
○ A mnemonic for subu rd, rd, rs

● subu rt, rs, imm
A mnemonic for addiu rt, rs, -imm

● subu rt, imm
○ A mnemonic for addiu rt, rt, -imm

● negu rd, rs
○ A mnemonic for subu rd, $0, rs

Bitwise logical

● and rd, rs, rt
○ rd = rs & rt

● andi rt, rs, imm - unsigned 16
○ rd = rs & imm

● Similarly or, ori, xor, xori
● nor

○ rd = ~ (rs | rt)
● Note there is no nori

Synthetic logical

● move rd, rs
○ Register move
○ Mnemonics for: or rd, rs, $0

Shifts left

● sll rd, rt, shift
○ rd = rt << shift

● sllv rd, rt, rs
○ rd = rt << rs

● Assembler can convert sra mnemonic into srav

Arithmetic and logical shifts right

● Arithmetic shift - propagating the sign bit
○ sra rd, rt, shift
○ srav rd, rt, rs
○ Assembler can convert sra mnemonic into srav
○ Useful to implement signed division by 2n

● Logical shift - bringing zeros into high bits
○ srl rd, rt, shift
○ srlv rd, rt, rs
○ Useful to implement unsigned division by 2n

Load constant

● lui rt, imm - signed 16-bit value
○ Load upper immediate
○ rt = imm << 16

● li rd, constant
○ Synthetic instruction to load immediate constant

● la rd, address
○ Synthetic instruction to load address
○ Address expression may use labels

Different synthetic forms of li

● Form with unsigned 16-bit argument
○ imm >= 0 && imm < 0x10000 (65536)
○ ori rd, $0, imm

● Form with signed negative 16-bit argument
○ imm < 0 && imm >= -0xFFFF (-32768)
○ addiu rd, $0, imm

● Form for other 32-bit immediates
○ lui rd, hi16 (imm); ori rd, rd, lo16 (imm)

Set if...

● slt rd, rs, rt
○ if (signed (rs) < signed (rt)) rd = 1; else rd = 0

● slti rd, rs, imm - 16 bit signed immediate
○ if (signed (rs) < signed (imm)) rd = 1; else rd = 0

● sltu and sltiu - use unsigned comparison
● Note that in sltiu 16-bit immediate is still

sign-extended to 32 bits, then compared
using unsigned comparison

Synthetic set if...

● seq, sne
○ set if equal (==), set if not equal (!=)

● sge / sgeu
○ signed / unsigned set if greater than or equal (>=)

● sgt / sgtu
○ signed / unsigned set if greater than (>)

● sle / sleu
○ signed / unsigned set if less than or equal (<=)

Loads and stores

● lb rd, address
○ Load byte, sign-extended
○ Fill bits [31:8] in MIPS32, [63:8] in MIPS64 with bit 7

● lbu rd, address
○ Load byte, unsigned
○ Fill bits [31:8] in MIPS32, [63:8] in MIPS64 with 0

● lh, lhu
○ Similarly with 2-byte halfwords

Loads and stores - continue

● lw rd, address
○ Load 4-byte word

● sb rd, address
○ Store byte, signed and unsigned form is

unnecessary
● sh rd, address

○ Store 2-byte halfword
● sw rd, address

○ Store 4-byte word

Branches, jumps and calls

● PC-relative branches (PC = program
counter)
○ Short range - 256KB - use 16 bit word offset
○ Use condition

● Absolute addressed jumps with constant
○ Long range - 256MB - uses 26 bit word address

● Jump to register - full 32/64 bit in MIPS32/64
● Function calls (subroutines/procedures)
● All branches, jumps and calls use delay slots

Branches - beq, b, beqz

● beq rs, rt, label
○ if (rs == rt) goto label
○ Uses 16 bit word offset
○ Range +/- 128KB

● b label
○ A mnemonic for beq $0, $0, label

● beqz rs, label
○ A mnemonic for beq rs, $0, label

Branches - bgez, bge, bgeu

● bgez rs, label
○ Signed, if (rs >= 0) goto label
○ Signed comparison obviously

● bge rs, rt, label
○ Synthetic slt at, rs, rt; beq at, $0, label
○ Signed, if (rs >= rt) goto label

● bgeu rs, rt, label
○ Synthetic sltu at, rs, rt; beq at, $0, label
○ Unsigned, if (rs >= rt) goto label

Branches - bgtz, bgt, bgtu

● bgtz rs, label
○ Signed, if (rs > 0) goto label
○ Signed comparison

● bgt rs, rt, label
○ Synthetic slt at, rt, rs; bne at, $0, label
○ Signed, if (rs > rt) goto label

● bgtu rs, rt, label
○ Synthetic sltu at, rt, rs; bne at, $0, label
○ Unsigned, if (rs > rt) goto label

Compare bge and bgt

● bge rs, rt, label
○ slt at, rs, rt
○ beq at, $0, label
○ if ((rs < rt) == 0) goto label

● bgt rs, rt, label
○ slt at, rt, rs
○ bne at, $0, label
○ if ((rt < rs) == 1) goto label

Other branches

● Other true machine instruction branches
○ blez rs, label

■ Branch if less or equal to zero
○ bltz rs, label

■ Branch if less than zero
○ bne rs, rt, label

■ Branch if rs not equal to rt
● Other synthetic branches

○ ble, bleu, blt, bltu

Absolute jumps

● j label
○ Absolute addressed jumps with constant
○ Long range - 256MB
○ Uses 26 bit word address
○ Lowest 2 bits assumed to be 0
○ Highest 4 bits are kept as current PC

● jr rs
○ Jump to address in register
○ 32-bit in MIPS32,64 bit in MIPS64

Function calls - short range

● bgezal rs, label
○ if (rs >= 0) call function
○ Return address is unconditionally saved in ra ($31)

● bltzal rs, label
if (rs < 0) call function
Return address is unconditionally saved in ra ($31)

● bal label
○ Mnemonics for bgezal $0, label

Function calls - long range

● jal label
○ Return address is saved in ra ($31)

● jalr rd, rs
○ Store return address to rd, jump to the contents of rs

● jalr rs
○ Mnemonics for jalr ra, rs

Using stack for function calls

● Stack pointer - register sp ($29)
● Frame pointer - register fp ($30)
● The discussion how to use stack

MIPS64 - compatible with MIPS32

● In MIPS64 32-bit operands in 64-bit registers
are treated as signed-extended

● Instructions like addiu simply continue to
work

● Operand in load upper immediate (lui rt,
imm) is sign-extended
○ Sign is copied in bits [63:32] of the target register

● Additional instructions for 64-bit operands

Additional MIPS64 instructions

● daddu, daddiu, dsubu, dmul
● dsll, dsllv, dsra, dsrav
● Constant shift >32 bit - dsll32, dsra32, dsrl32
● ld
● lwu
● Synthetic dla, dli

Instructions that do nothing

● Any instruction that targets $0
● nop - mnemonic for sll $0, $0, 0

○ Convenient because it encodes as 0x00000000
● ssnop - sll $0, $0, 1

○ Special treatment on superscalar processors
■ Guaranteed to spend at least 1 clock cycle to run

Instructions to discuss later

● syscall - causes a system call exception
● di and ei - disable and enable interrupts
● eret - return from exception
● cache - instruction to work with caches
● sync - memory access synchronizer

Instructions to discuss later - 2

● ll - load linked, for atomic access
● sc - store conditional, for atomic access
● mfc0 - move from coprocessor 0
● mtc0 - move to coprocessor 0
● ehb - execution hazard barrier, for

coprocessor 0 access

Useful sometimes

● clo and clz - count leading ones and zeros
● ext and ins - bit manipulation
● rol and ror - rotations
● seb and seh - sign extension
● wsbh - byte swap
● MIPS64 additions to all the above

○ Except seb and seh, they don’t need MIPS64
version

How to practice - MARS simulator

Thank you!

