Selected slides from Nanometer ASIC couse slides developed by Charles Dancak

Managing Complexity

1-10

At the physical layout level, dimensions are truly nanoscale.

NAND Switching Action

A O O	ND Ta B O 1	Y 1			Ci	ll-Up rcuit added)		
1	0	1		,			Y	0
1	1	loor Vie	plan w	В			A	1
					C	SND		
			\rightarrow					

- Two transistors in series implement NOT-AND action.
- When A and B are 1, the output Y is pulled down to 0.
- In all other cases, Y gets pulled up to 1 (not shown).

Six Critical Phases

- Developing a new ASIC involves hundreds of steps.
- We'll subdivide them into these six distinct phases.

The ASIC Ecosystem

- A fabless design house focuses on design innovation.
- In-house experts may still work closely with foundry.
- Project planning secures commitments of partners.

HDL-Based Synthesis

- The synthesis tool is able to read in an HDL code file.
- It compiles the HDL constructs into equivalent logic.
- Optimizes for speed—then trims down overall area.

Standard-Cell Library

- Synthesis tool accesses a foundry-specific cell library.
- Most cells come in drive strengths from ×1 up to ×16.
- Cell characteristics listed in concise *Liberty* format.

IP Core Formats

2-33

Soft IP (RTL Code)

Aspects:

- User-modifiable.
- Synthesized with other RTL code.

Firm IP (Netlist)

Aspects:

- Fine-tuneable.
- Can be resynthesized to a user's constraints.

IP Economics:

Hard IP can be 10× cheaper because it's less user-modifiable. Soft IP is modifiable —but vendor defends the product branding.

Hard IP (Layout)

Aspects:

- Optimized to technology.
- Not modifiable by user.
- Physical design by vendor.
- Usually ARM and similar IP provided in soft format.
- Analog or high-speed digital interface is always hard.

Verification Trends

Embedded Assertions

```
//Assert concurrently:
             //Declare property:
               property reg5gnt;
                                                         assert property (req5gnt);
                 @(posedge clk) disable iff (!rst)
                 respirate{$rose(req) | -> \#\#[1:5] \ qnt;}
Explicit clk1
      req
      Pass:
                                                Fail:
                                                                             Abort:
      gnt followed ∆reg
                                                No gnt after ∆req
                                                                             rst active.
      on 3rd clk↑ edge.
                                                by 5th clk edge.
```

- Assertion checked every clock edge; failures logged.
- Property asserted can be entire sequence of events.

A Successful Check

- These RTL and gate-level schematics seem different.
- But were proven functionally equivalent by FEC tool.

Emulation Concepts

- HDL code compiled, mapped onto FPGA-like clusters.
- Huge array is a lower-speed hardware model of SOC.

Initial Floorplan

- A floorplan arranges all blocks within an outline of silicon die.
- Routing regions required in between the pad ring and core.

Power-Supply Grid

- Floorplanning includes adding power-supply rings, straps.
- Supply straps in turn feed power to local standard-cell rails.

Topological to Physical

- During placement, standard cells are positioned in rows.
- Voltage is distributed via common power, ground rails.

Final Cell Placement

- Every standard cell in netlist is placed at an (x, y) location.
- Cells arranged in horizontal rows—but not yet connected.

Standard-Cell Routing

- Identical in height, standard cells abut to form rows.
- Router makes pin-to-pin connections on metal layers.
- Logic function shown compares two bits for equality.

Design-Rule Checking

- DRC rules determine the width and height of standard cells.
- Manufacturability requires strict adherence to all DRC rules.

At the Photomask Shop

- At tape-out, GDSII file was ftped to photomask shop.
- Geometry of each layer is written onto a blank mask.

Design Data to Mask Set

- A moving electron beam selectively removes chrome.
- Result: precise 4× pattern of geometry for one layer.

Step-and-Repeat Stage

- In earlier steppers, the reticle remained stationary.
- The wafer was stepped, and entire reticle exposed.
- A scanning stepper moves both, exposing by strips.

Ion Implantation

- Implantation buries dopant atoms just below surface.
- Dopant profile—depth and dose—carefully controlled.
- Annealing resettles atoms in damaged crystal lattice.

Economics of Wafers

- Foundries like TSMC buy blank wafers from a supplier.
- Growing defect-free silicon crystals is an art in itself.
- One blank 300-mm wafer costs over a hundred dollars.

FIB Microsurgery

- Focused ion-beam milling is like electron microscopy.
- Heavy Ga ions edit circuitry, to prove out a mask fix.
- Often key customers want a working sample of a fix.
- Harder with flip-chip; back of the die must be etched.

Single nMOS FinFET (4/4)

A-12

- Contacts are added as usual to the source, drain, and gate.
- The green-shaded ends of the fin behave like the nanowire.
- The resulting finFET approaches ideal long-channel behavior.
- Structure should scale well from 22 nm to 14 nm to 10 nm.

Beyond CMOS ICs

A-22

- Moore's Law is thus expected to continue for two decades.
- New devices and chip-wide interconnections may be needed.
- But CMOS technology will remain as a solid, scalable baseline.